AD=A304 170 GENERAL ELECTRIC CO PITTSFIELD MA ORDNANCE SYSTEMS /8 972
ELECTRICAL CHARACTERIZATION OF ADVANCED MICROPROCESSORS,(U)
JUN 81 B W HAJDUK, T M OSTROWSKIe B NEWTON FSDGOE-ID-CﬂWOI.
UNCLASSIF RADC=TR=81-126

1ED
/
al
s

RADC-TR-81-126
Final Technical Report

June 1981

-

i

P

< |
| < ELECTRICAL CHARACTERIZATION

< OF ADVANCED MICROPROCESSORS

<Q|: General Electric Company «\o &@ ®
| L

A

Barney Hajduk, et al %jg ‘é

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITEDJ

ROME AIR DEVELOPMENT CENTER
a Air Force Systems Command
S Griffiss Air Force Base, New York 13441

' . o
= °1 9 14
- 78

WA

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nationms.

RADC-TR~81-126 has been reviewed and is approved for publicationm.

APPROVED: 12;7,;,(IQLL‘—»»’

_REGIS C. HILOW
Project Engineer

srmom: Dguidh O Leoke

DAVID C. LUKE, Colonel, USAF
Chief, Reliability & Compatibility Division

=5 A

JOHN P. HUSS
Acting Chief, Plans Office

FOR THE COMMANDER:

A]
emoved from the RADC
loyed by your organizationm,
This will assist .us in

If your address has changed or if you wish to be r
mailing list, or if the addressee is no longer emp
please notify RADC. (RBRA) Griffiss AFB NY 13441.
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

T e i 283 S i S

* [Y
s UNCLASSIFIED '
‘ SECURITY CLASSIFICATION OF THIS PAGE (When D-la‘EnforvdL
= |- / .. i) REPORT DOCUMENTATION PAGE BEF OB ComPr LN RM
‘ [N uatm_” 2. GOVT ACCESSION NO.| 3. RECIPIENT'S TATALOG NUMBER
RADCLTR-81-126 v/ D-A/0Y\ /70
4. TITLE (and Subtitle) /F‘: ‘Vf‘o‘ ‘}:’?_"-.1 P EMOD-COVERED -
!} ELECTRICAL CHARACTERIZATION OF ADVANCED _7/ 3122 lggi nical Report.
~ | MICROPROCESSORS - v / :
, 6. PERFORMING 03G. REPOAT NUMBER ~
N/A
7. AUTHOR(sS) 8. CONTRACT OR GRANT NUMBER(s)
'\ i / -, oo 7
l\;/ Barneyv W./Hajduk, et al ‘\!/U F30602-80-C-0041 !
dl ‘ / , } .
TN AMING ORGANLZATION N AME ADONESS 10. ::giR&A‘w‘OERLKES\EJIN?T'NPURMOBJEEEJ’ TASK
General Electric Compan;78rdnance Systems
B s 62702F)
| 100 Plastics Ave Ko / b3380187 S
, Pittsfield MA 01201 L | A ST AT 2N
3 11. CONTROLLING OFFICE NAME AND ADORESS i « 1!'2. RERPQRT DATE .
) e
Rome Air Development Center (RBRA} - une k9 S —
Griffiss AFB NY 13441 (///:ﬁ's"”"““ oT Faces
! T4, MONITORING AGENCY NAME & ADORESS/if different from Controlling Otfice) | 1S. SECURITY CLASS, ‘of thrs report)
LNCLASSIFIED
Same TSa. DECL ASSIFICATION. DOWNGRADING
[\‘/A SCHEDULE

! 16. DISTRIBUTION STATEMENT rof this Report)

i Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

i 18. SUPPLEMENTARY NOTES

RADC Project Engineer: Regis C. Hilow (RBRA)

19. KEY WORDS (Continue on reverse side if naceasary and identify by dlock number)
Microprocessor

Electrical Testing
Benchmark
MIL-M-38510 Slash Sheet i

‘ . ABSTRACT (Continue on reverse side If necessary and identity by block number)
The objective of this effort was to develop functional and parametric

7 tests for selected microprocessors and to develop MIL-M-38510 slash sheets
- for them. A test pattern and program were developed for the Z8001 and
data was taken and analyzed to determine its operating region. A general
{ benchmark was also developed and used to compare the performance of the
8086 and z8000.

DD ,"5%"™, 1473 <oition oF 1 nov 6515 0BsOLETE UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE (W .n Date Entered)

/ ";1/ // /

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tu'® PAGE/When Date Entered)

PREFACE

This Final Report was prepared by General Electric Ordnance Systems,
100 plastics Avenue, Pittsfield, Massachusetts, for Rome Air Development
Center, Griffiss Air Force Base, New York, under contract F30602-80-C-0041.

It covers the period from January 1980 to December 1980. Mr. Regis C.
Hilow, RBRA, was the RADC Project Engineer,

The work on this project was performed by the Electronic Circuits
Engineering Operation and Components Engineering Unit. Project re-
sponsibility was held by Messrs. Thomas M. Ostrowski and Barney W. Hajduk
of Circuit Design Engineering. Key individuals who made significant
contributions to this report were Messrs. Bruce Newton, William Keller and

Richard English.

Accession For

ual
XT1S «gragy

PTIC T3)
Uitnrmmisioag n
Ja:tifjca‘icn l
]
...... R
By _ .
Distrizirgn,
Avaliav;lice Criag T
[ATT I T T
’p R P AR Y o !
“i.’f T 4. .
: CLecigl

(‘ -
!

| 4‘

! i

! !
o '.‘.—-———4—* - ..J

iii

R

CONTENTS

LIST OF FIGURES

LIST OF TABLES

SECTION I. SUMMARY

SECTION II. INT RODUCT ION

SECTION III. BENCHMARKING THE 8086 AND 28001
SECTION 1V. CHARACTERIZATION OF THE 28001 MICROPROCESSOR
SECTION Vv, TEST DEVELOPMENT FOR THE 28000
APPENDIX A. 28001 TASK BENCHMARKS

APPENDIX B. 8086 TASK BENCHMARKS

APPENDIX C. ARITHMETIC MIX COMPOSIT ION

APPENDIX D, 28001 ARITHMETIC MIX RESULTS

APPENDIX E. A086 ARTTHMETIC MIX RESULTS

APPENDIX F. CRI TERMINAL CONTROLLER MIX DEFINITION

APPENDIX G. 28001 TEST PROGRAMS

iv

Page

ii

iv

Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

3-1

4-2
4-3

4=4

4=6

4=7

4-8

4=10

4-11

4-12

4-13

4=14

4-15

LIST OF FIGURES

CRT Terminal Controller Model

Test Vector Generation Circuit

28001 Test Program Flow Chart

Z8001 Load Circuit

Count of Vendor L's Passing
Limits

Count of Vendor L's Passing
Limits

Count of Vendor A's Passing
Limits

Count of Vendor A's Passing
Limits

Count of Vendor A's Passing

Devices

Devices

Devices

Devices

Devices

1v-6
v-7

for Commercial V-9

for Ccommercial Iv=-10

for Commercial 1v-11

for Commercial Iv=-12

for Military Limits 1v-13

Count of Vendor A's Passing Devices for Military Limits Tv-14
Vig Vs. Voo at =55°C for Vendor L Devices =16
Vip, V8. Vge at 125°C for vendor L Devices v-17
Vig Vs. Vgc at 125°C for vendor L Devices IV-18
ViL Vs. Vge at 125°C for vendor A Devices 1v=-19

Frequency vs. Temperature at 50% Duty Cycle for vendor 1v-20

L Devices

Frequency vs. Temperature at 40% Duty Cycle for Vendor IV-21
L Devices

e

Figure 4-16

Figure 4-17

Figure 5-1

Duty Cycle vs, Frequency at -55°C for Vendor L
Devices

Duty Cycle vs. Frequency at 125°C for vVendor L
Devices

28000 Block Diagram

vi

Table
Table
Table
Table
Table
Table
Table

Table

3-1

3-2

LIST OF TABLES

78001/8086 Benchmark Pertormance Summary

Task Benchmark Results

28001 Execution Times

8086 Task Execution TimeS$

Arithmetic Mix (Result Summary)

8085 CRI Terminal Controller Mix Benchmark Results
Z8001 CRT Terminal Controller Mix Benchmark Results

Device Serial Numbers

vii

I11-7
I111-10
I11-12

v-7

{ SECTION I

i SUMMARY

This report details the efforts performed on a 16-bit microprocessor
characterization contract for RADC. A general benchmark was developed and
used to compare the performance of the 8086 and 7Z8000. A test pattern was
developed and data was taken and analyzed to determine the operating region
of the 28001, AC and DC tests supplied by the vendor were analyzed and a
preliminary analysis of the vendor's functional test was performed. A
MIL-M-38510 slash sheet (not included in this report) was developed for the

i Z8001 and 78002,

&7 > o

i-1

SECTION TII

INT RODUCT ION

This characterization was an extension of similar efforts performed for
other microprocessors on previous RADC contracts,

A general benchmark was developed and used to compare the performance
of the 8086 and z8000. Section III of this report describes the results of
this benchmarking effort,

A test pattern and program were developed for the Z8001 and a charac-
terization was performed on a small sample of devices. Section IV describes
the characterization and analysis of data.

The evaluation of the functional tests for the 728001 and z8002 was
started on this contract. A list of tests required to check these devices
was prepared and submitted to the vendor to assist in the evaluation. The
vendor's AC and DC tests were evaluated and a MIL-M-38510 slash sheet was
developed. Evaluation of the functional test will be completed on a future
RADC contract. Section V of this report describes the review of the tests
for the Z8001 and Z8002,

11-1

SECTION III

BENCHMARKING THE 8086 AND Z8001

OBJECTIVE

The objective of this evaluation was to develop a general benchmark
for comparing the 8086 and Z800] l6-bit microprocessors. Since military
applications include a large variety of microprocessor tasks, the benchmark
had to provide a general assessment of each microprocessor's capabilities
and a means of comparing them. It also had to be independent of programming/
programmer bias and experience level.

SUMMARY

The microprocessors were benchmarked using five tasks and two mixes of
instructions. In addition, the vendor support of the devices was examined.

The five tasks chosen were moving a block of data, adding and
nultiplying data arrays, sorting a data array, and servicing interrupts. The
two mixes chosen were an arithmetic mix and a CRT terminal controller mix.

The results of the benchmarks are summarized in Table 3-1, with the
performance of the Z800l normalized to that of the 8086. The task bench-
marks used the data calculated from operations on a 256 word array. A 5%
deviation from calculated execution times was used for the 8086, since
this is the minimum deviation to be expected, as detailed in the vendor's
literature,

The benchmark results revealed that the Z800l was significantly more
efficient and significantly faster than the 8086 in six of the seven tests.
The remaining test was inconclusive although the instruction prefetch
mechanism of the 8086 could change this. The vendor of the 8086 states that
actual execution times can be expected to be 5% to 10% slower than calculated
execution times and this would increase the speed advantage of the Z800l.

Both devices were found to be well supported by vendor supplied
development systems supporting high level language programming.

The Z8001 was found to be a better choice than the 8086 by these
comparisons.

MICROPROCESSOR DESCRIPTION

The 8086 is an HMOS (high performance n channel) device which operates,
in the military version, at a clock rate of 5 MHz., This device uses a
dedicated register architecture and can address 1 megabyte of data memory.

I1I-1

TABLE 3-1 28001/8086 BENCHMARK PERFORMANCE SUMMARY

28001 28001 28001
Task Execution Time Machine Cycles Bytes of Code
Move a block of data 647 53% 917
Add data arrays 83% 697 89%
Multiply data arrays 617 51% 717
Sort a data array
best case order 13% 81% 81%
worst case order 20% 17% 81%
Service interrupt 88% 97%
Arithmetic mix 947 77%
CRT terminal controller 108% 867

1) Baseline is 8086 calculated performance, plus 5% per the vendor's
literature.

2) 256 element arrays are assumed.

The Z8001 is an NMOS device which can operate at a clock rate of 4MHz
and address 8 megabytes of data memory. It can utilize a Memory Managemeat
Unit to limit memory access, modify logical addresses to virtual addresses,
and perform other memory management tasks.,

Both devices support arithmetic operations on Binary Coded Decimal data,
while the 8086 also supports ASCII arithmetic manipulations. Both devices
have control lines used for multiprocessor applications.

BENCHMARKING OVERVIEW

The primary advantage of task benchmarking is that it illustrates the
specific instructions available to the processor under test., However,the
results obtained using this method can be misleading, since the selection of
the task and programmer bias (in terms of preference, experience, and skill)
can affect the results.

Mix benchmarking removes the human factor from the programming by the
extraction of instruction types from a specific application. However, it can
be limiting in that it uses only those instructions common to most
microprocessors. The mix benchmark, therefore, does not compare the total
instruction sets available to the microprocessors.

111-2

PR W Y

The general benchmark used both methods. Task benchmarks were used to
compare the specific instructions available to each microprocessor, while
the mix benchmarks compared the processors' common instructions. This
combination of benchmarking methods yields an accurate measure of
microprocessor performance.

All benchmarks assumed an ideal system with no delays caused by the
operator, slow memory, or other causes,

Task Benchmarks

The tasks selected for the general benchmark are similar to many
published benchmarks. These tasks were expanded to include referencing of
the large memory addressable by the microprocessors, but are otherwise
standard. The tasks included moving a block of data, addition and
nultiplication of data arrays, sorting of a data array, and servicing
interrupts.

Coding of the tasks and derivation of the results can be found in
Appendices A and B, Since the time required for execution of some of the
tasks is dependent (n the number of elements processed, the results are
representative operating times calculated for these tasks using 256
element arrays. It was assumed that eight registers had to be saved and
restored for servicing interrupts.

Mix Benchmarks

Two mixes representing contrasting tasks were chosen for the benchmark.
The first mix was an arithmetic mix." This mix was derived from a military
fire control simulation mix which was modified slightly to enable the testing
of microprocessors rather than minicomputers. The mix modifications are
described in detail in Appendix C. Floating point operations were deleted
because they do not exist as a hardware feature on either processor. The
detailed derivation of the results of this mix is presented in Appendices
D and E.

A CRT terminal controller mix was developed to complement the arithmetic
mix. A detailed description of the mix derivation is presented in
Appendix F. An overview of the model system and overall task is presented
here for convenience. Refer to Figure 3-1 for the system block diagram.

For the terminal mix, it was assumed that the microprocessor is totally
dedicated to the modification and management of the system and video buffer
nmemories. The system is interrupt driven with keyboard and video interrupts
allowed. While the system memory is accessible at all times, the video
buffer can be accessed only during vertical sync periods as determined by
the video timer and controller and the control circuits.

I11-3

R

e

—
TIA0R YATTION INOD TWNTIWYEL D 1-¢ JaNo1d
IESTIYINSE PAROGLY
BRI s[eo yndur
4.
4 Ty
BN 1033000 1a3ing 0apla puy STH Sseapry
19XaLdE I Sy §Sa1ppy
131300 wapta ‘rapgng gy "
1 91
h S8alppy
uy
£l 41 S82.ppy
AY
5831ppy ES3ippy Isanbay
3daaaug
LY
viwvg /-
o
oap1y AI.IT.\;:E“:OU
pur raowak 8
w1 19504 P
oap1y oap1A 4
AloWap
waIsAg

III-4

JEGRS U RE,

The program developed was assumed to reside in system ROM thus limiting
the addressing modes used., It was assumed that the processor was
functioning in a "wait" loop prior to any interrupt and only those steps
necessary for execution of the basic task were included in the definition.
No "wait" states were required for memory access and all subroutines could
be completed in one vertical sync period.

While the processor's time would not, in any reasonable application,
be wasted on looping until interrupted as it is here, the system and
programming were developed specifically to test data handling efficiency.
This does not prohibit the execution of other tasks during the processor's
"off" time, but comparing the processors is much clearer, and more
meaningful, if added tasks are absent. The human interface was considered
to be perfect for the task in the sense that it was not allowed to detract
from the measurement of processor performance.

RESULTS
Benchmarking

The 8086 and Z800l1 were compared using both task and instruction mix
benchmarking methods.,

Task benchmarking compared the lines of code and time required for
the processors to execute specific tasks. This method allowed comparison
of instructions not common to both microprocessors.

The five tasks chosen were moving a block of data, adding and
multiplying data arrays, sorting a data array, and servicing interrupts.
These tasks are similar to those used in many published microprocessor
benchmarks, except for the modifications necessary to utilize the large
memory space available to the processors.

The results of the task benchmark are summarized in Table 3-2 through
3-4, while the coding and derivation of these results can be found in
Appendices A and B. For the purposes of comparison, representative
execution times were calculated using the derived equations and assuming
256 element arrays.

Two mixes of imstructions, derived from statistical analyses of
instruction usage in specific microprocessor applications, were used to
compare instructions common to both processors.

An arithmetic mix, derived from a military fire control simulation
nix, was used to evaluate the arithmetic efficiency of the processors., The
modifications to the military mix invelved the deletion of floating point
and transcendental functions, which are not hardware supported by either
processor. The derivation of the mix can be found in Appendix C. A
summary of the results for the arithmetic mix can be found in Table 3-5.
The derivation of the results is included in Appendices D and E,

II1-5 ‘ i

L SAPCRN L 2d

TABLE 3-2 TASK BENCHMARK RESULTS
!
28001 8086
Task Bytes Cycles Bytes Cycles
1. Move a block of
16 bit words 20 40 + 9n 22 35 + 17n ‘
2. Add two arrays of
16 bit words, 16
; bit result 40 47 + 54n 45 36 + 78n 1
o 3. Multiply two arrays
of 16 bit words, 32
bit result 36 40 + 117n 51 36 + 230n
4, Sort an array of
! 16 bit words
a) best case order 46 92 + 72n + 32 57 8412-13n+41
i b) worst case order 46 9n2 + 72n + 32+
i (1214243444 (n-1))) | 57 | 91n2-20n+41
5. Service interrupt 306 421

TABLE 3-3 Z800l1 TASK EXECUTION TIMES

:’ Task * Cycles Time :
}1 1. Block move 2,344 +59 ms g
2. Array addition 13,871 3.5 ws i
3., Array multiplication 29,992 7.5 ms ;

4, Array sort

+ a) best case order 608,288 152 ms |
+

b) worst case order 999,968 250 ms |
- 5. Service interrupt 306 .08 ms

*

Calculations for tasks 1 through 4 ar: based on 256 element arrays.

I11-8

> Y N PP

{
|
i
p |

& TABLE 3-4 8086 TASK EXECUTION TIMES

Calculated Expected Run

Task * Cycles Time Time (+ 5%)

1. Block move 4387 +88 msec +92 msec

2. Array addition 20,004 4,0 msec 4.2 msec
3. Array nultiplication 58,916 11.8 msec 12.3 msec ,

4., Array sort
a) best case order 5,501,737 1100 msec 1155 msec

b) worst case order 5,958,697 1192 msec 1251 msec

b g

5. Service interrupt 421 .08 msec .09 msec

* Calculations for tasks 1 through 4 are based on 256 element arrays.

! TABLE 3~5 ARITHMETIC MIX (RESULT SUMMARY)

28001 (4Mdz) 8086 (5MHz)
Calculated Expected (+5)
Group 1 Data Movement 16.2 msec 17.4 msec 18.3 nsec
Group 2 Arithmetic 2.5 msec 3.3 msec 3.4 msec
2 Group 3 Shift/Rotate .80 msec .58 msec .61 msec
‘ Group 4 Conpare «22 msec 0.28 msec .29 msec
Group 5 Branch Instructions 5.1 msec 5.4 msec 5.6 msec
f’ Group 6 Index Register 2.6 msec 1.2 msec 1.3 msec i
' Operation
! Group 7 Logical Operations .55 msec .66 msec .69 msec ;
Group 3 Input/Output .22 msec .14 msec .15 msec
¥ Total Time Required 28.2 msec 29.0 msec 30.0 msec

I11-7

A CRT terminal controller mix compared the data handling capabilities
of the processors. A detailed description of the derivation of the mix
is included in Appendix F. The results of this benchmark are summarized
in Tables 3-6 and 3-7. The symbols used in these tables are defined as
follows:

N/A: Not Applicable

IM: Immediate
IR: Indirect Register
DA: Direct Address

Architectural and Software Considerations

In order to allow the easy translation of the earlier 8080 family
software, the 8086 features a dedicated register architecture. While thisg
system of register use is familiar to many, the regular register
architecture of the Z800l1 is much easier to learn and much faster to
use in assembly language programming.

The Z8001 can directly support 8 megabytes of memory, 7 megabytes
more than the 8086, and allows for direct conditional branching anywhere
within the memory space. This address space is easily expandable to 48
megabytes by decoding the Z800l's status lines.

The 8086, while supplying unlimited range by the use of an
unconditional jump command, is limited to +128, -127 bytes directly in
conditional branching and loop instructions.

Due to the prefetched instruction queue, the penalty for taking a
conditional branch is very high in the 8086. Instruction execution times
are at least three, and sometimes four, times the basic instruction times.
The use of the statistical determination that most conditional branches are
less than +/~ 127 bytes away aids in reducing the number of 8086 code lines.,
The 28001, even though using two lines of code per branch instruction, is
much faster in execution.

The ability to easily transform 8080 family code to 8086 code costs
a great deal in performance. The decision to break with past processor
architectures allows the Z8001 to be more efficient and more versatile than
the 8086. While the loss of 8080 family software compatibility would be
a small price to pay for the increase in performance, this loss is more
apparent than real since the Z800l1 is well supported by its software
development system.

Product Maturity and Future

The 8086 is available in an evaluation board and a single board
computer, as well as a separate IC,

I11-8

The processor is supported by a development system which can support
in circuit emulation. The development system will support Basic and
Fortran, the proprietary PL/M, and the macro assemblers for the 8080 family
as well as the 8086.

The 8089 Input/Output Processor and 8087 Arithmetic Coprocessor, which
improve the performance of the 8086, are currently available.

While a second source agreement has been made, no devices are expected
from the second source in the near future.

The 28001 is also available as a single IC or in a single board
computer or an evaluation board.

The development system supporting both the Z8001 and 28002 offers
optional in circuit emulation. The development system will support Fortran,
Basic, Cobol, Pascal, the proprietary PL/Z, and the macro assemblers
for the 8080 as well as 280 families. Further software support is
of fered by a translation routine which will translate Z80, 8080, or 8085
source code into Z8000 source code.

Coprocessor development in support of the Z8000 family has been
announced, but no details of function or availability have been released.
The processors now being produced will, however, allow for the use
of these coprocessors when they become available.

An active second source is currently producing the Z8000 family as
well as marketing a development system.

ITI-9

! TABLE 3-6 8086 CRT TERMINAL CONTROLLER MIX BENCHMARK RESULTS
Address Machine Number Total
Command Mode Cycles Used Cycles
1. Clear Register (Word) 1/ N/A 4 742 2,968
(AND) -
2. Clear Register (Byte) 1/ N/A 4 750 3,000
(AND) -
3. Set/Load Byte IM 4 679 2,716
4, Set/Load Word IM 4 144 576
5. Move Byte, Register to N/A 2 167 334
{ Register
= 6. Move Word, Register to N/A 2 1,157 2,314
. Register
' 7. Move Byte, Memory to Register IR 14 107,520 1,505,280
1 8. Move Byte, Register to Memory IR 15 119,040 1,785,600
v 9. Move Byte, Register to Memory DA 12 11,999 143,988
- (1/0) 3/
10. Read Word, Memory to Register DA 10 12,384 148,608
(1/0)
i 11. Clear Memory (1/0) g/ DA 11 12,384 136,224
l 12. Move # to Memory, Byte, DA 12 148 1,776
| (1/0) 3/
13. Move # to Memory, Byte DA 16 34,753 556,048
14, Move # to Memory, Byte IR 15 1,233 18,495
15. Increment Register N/A 2 203,744 203,742
16. Increment Byte Register N/A 2 24,445 48,890
17. Decrement Register N/A 2 1,575 3,150
18. ADD Register M 4 20 80
| 19. Logical AND to Register M 4 25 100
20. Subtract from Register M 4 4 16
21. Logical or to Register M 4 7 21
22. Clear/Set Bit 1/0 4/ DA 12 45,537 546,444
23. Conditional Jump Taken N/A 16 25,382 406,112
24, Conditional Jump Not Taken N/A 4 153,280 613,120
25. Unconditional Jump N/A 15 98,344 1,475,169

Total Cycles = 7,604,762

Total Calculated Time =

1.52 seconds

Expected "Execution"” Time (+5%) = 1.60 seconds

NOTES:

(1) No CLEAR instruction exists for the 8086 microprocessor. CLEAR is
‘ implemented by an immediate AND with O, word or byte as required.

(2) Clearing an 1/0 port is implemented by ANDing the accumulator with
0 and outputting the result to the required port. Thus 8 + 3 = 11
required cycles (AND AL, #0; OUT DX, AX).

(3) Movement of data to an output port requires an accumulator load
followed by outputting the requested data, thus 8 + 4 = 12 cycles
mininum (MOV B AX, #B; OUT DX, AX).

(4) Setting and clearing of output port bits is accomplished by setting
or clearing the appropriate accumulator bits by an immediate MOV
instruction, then outputting the results. Thus, 8 + 4 = 12 cycles
are required (MOV AX, f#iset; OUT DX, AX).

I1I~-11 j

e L

e ™

TABLE 3-7 Z8001 CRT TERMINAL CONTROLLER MIX BENCHMARK RESULTS

Address Machine Number Total
Command Mode Cycles Used Cycles

1. Clear Register, Word (CLR) N/A 7 742 5,194

2. Clear Register, Byte (CLRB) N/A 7 750 5,250

3. Set/Load Register, Byte (LDB) IM 7 679 4,753

4, Set/Load Register, Word (LD) M 7 144 1,008

S. Move Byte, Register to N/A 3 167 501
Register (LDB)

6. Move Word, Register to N/A 3 1,157 3,471
Register (LD)

7. Move Byte, Memory to IR 7 107,520 752,640
Register (LDB)

8. Move Byte, Register to IR 8 119,040 952,320
Memory (LDB)

9. Move Byte, Register to DA 12 11,999 143,988
Memory, I/0 (OUT B)

10. Read Memory to Register, DA 12 12,384 148,608
Word 1/0

1I. Clear Memory, Word O Out to DA 12 12,384 148,608
I1/0 Port (Out)

12. Move # to Memory, Byte DA 12 148 1,776
I/0 (OUT B)

13. Move #, to Memory, Byte (LDB) DA 14 34,753 486,542

14. Move #, to Memory, Byte IR 11 1,233 13,563

15. Increment Register, Word N/A 4 203,744 814,976

16. Increment Register, Byte N/A 4 24,445 97,780

17. Decrement Register, Word N/A 4 1,575 6,300

18. Add Register, Byte (ADDB) M 7 20 140

19. And Register, Byte (ANDR) M 7 25 175

20, Subtract Byte (SUBB) M 7 4 21

21. Logical OR Register, Byte IM 4 7 21
(ORB)

22. Set/Clear Bit (SET B) DA 16 47,537 760,592

23. Conditional Jump, Taken (JP) DA 8 25,382 203,056

24, Conditional Jump, Not DA 8 153,280 { 1,266,240
Taken (JP)

25. Unconditional Jump (JP) DA 8 98,344 786,752

Total Cycles Required

= 6,564,275

Total Time Required (4MHz) = 1.64 msec

.y

T
Pl

SECTION IV

CHARACTERIZATION OF THE Z8001 MICROPROCESSOR

OBJECTIVE

The purpose of this effort was to perform a characterization of the
Z8001 microprocessor. The following tasks were included in this effort:

1. Develop a short test pattern which would exercise a large
percentage of the circuitry in the 28001.

2. Develop a test program compatible with the Tektronix 3270 at
RADC. This program would use a GO/NOGO functional test with
worst case timing parameters.

3. Test commercial and military parts (if available) to determine
device operating regions. Test results would provide an
indication of the compliance of the device to vendor specified
limits and whether the device will operate in the military
temperature and voltage ranges.

SUMMARY

The characterization of the Z8001 determined device sensitivity
to various combinations of Vg, clock frequency, clock duty cycle, and
logic level inputs over the -S55 to +125°C temperature range. Test
patterns were generated using a simple EPROM based Z800l system developed
for that purpose. A machine level program was written and transferred
into the EPROM, a logic analyzer was connected, and the test vectors
were recorded as the system ran. A test adapter and 3270 GO/NOGO
functional test program were developed for taking and storing data. All
of the programs that were developed are included in Appendix G.

Data was taken on seven commercial and two military parts. Devices
were obtained from both manufacturers of the Z8001.

None of the devices passed at the vendor specified limits over the
commercial voltage and temperature ranges. Vendor L's devices required
that Viy = 2.2 V and Vendor A's devices required that Vyy =2.3 V for 100%
of the devices to pass. Vendor L's devices would operate only up to
3.5 MHz at 70°C with the minimum specified clock low time. Vendor L is
aware of this duty cycle/temperature problem and is taking corrective
action. Vendor A's devices did operate up to 4 MHz at 70°C but exhibited
this problem at 125°C.

rve

[

»_»j

None of Vendor L's devices would operate over the entire military
temperature and voltages ranges. At 125°C they all failed at Voo = 4.5 V.
Performance improved at 4.75 V but not all devices passed. The problem
does not appear to be input level sensitive. Vendor L had not
experienced this problem and offered to retest the devices. This may
be done at a future date,.

Two of Vendor A's devices passed over the military temperature and
voltage ranges for some combinations of drive levels and frequencies.
Viyy had to be 2.4 V or greater for any of the devices that did operate J
in this range. The maximum frequency they would work at over the entire
range was 3.5 MHz. As previously mentined they also exhibited the duty
cycle/temperature problem at 125°C. Only one device passed at 125°C
with Vcc = 4.5 V even with Vi, = 0.0 V. At Vg = 4.75 V all devices passed
if Vi, was less than 0.6 V indicating that the device was sensitive to
input low drive levels.

As a result of this effort, test patterns and programs are in place
on a Tektronics 3270 and are available to perform additional testin: or
nmore cxtensive characterization.

DISCUSSION

The Z-8001, introduced in 1979, is a radical departure from the
dedicated register architecture of the earlier eight bit machines.
The use of a sophisticated architecture featuring sixteen bit, non-
dedicated registers, plus a set of parallel stack registers, greatly
increases the difficulty in developing an effective test.

Vector Development

Part of the characterization effort consisted of the development
of a short pattern that could be used to test the Z800l. Since a large
portion of the circuitry in a microprocessor can be tested by the fetching
and execution of a small number of instructions, the use of a short pattern
provides a good indication of device performance while minimizing the
number of pattern loads required during the test. The following methods
of vector development were investigated:

1. Manual generation of the test vectors.

2. The hardware emulation approach to vector generation which
includes the use of the 3270 to record the test vectors.

3. The manual extraction of the test vectors from an operating
28001 system.

V-2

T T e
RIS 0]

i The first choice was ruled out because information was not available
in the vendors' literature to indicate on what clock cycles instructions
and data had to be available to the processor. The second was ruled out
] due to the risk and cost involved in using a Z8001 board which had just

j come on the market. The third method which uses a logic analyzer to
extract the test vectors from an operating system was chosen.

Vector Generation

The system shown in Figure 4-1 was designed and built. A machine
language program was written and programmed into the EPROMs, After the
program was debugged, a logic analyzer was connected and the vectors were
extracted and recorded for later transcription to the 3270.

| Vector Description

The pattern developed contains 512 vectors. The following functions
of the 28001 were tested:

1. Reset
2. Moving data into and out of all user accessible registers,
including the refresh, NPSAP, and normal stack pointers, at

least once.

i 3. Multiple "automatic” register loads to and from memory.

4, Conditional and unconditional jumps.

5. The clearing of word and long word registers,
6. Add and multiply.

7. Test word and long word registers.

Output word operands

o
.

9., Halt

These functions used intersegment data and code fetches and five of the
eight addressing modes.

Iv-3

Wodd
11

ss3¥aay 1m||uvnw|||u

4

HO1V'1

SSd¥acy

11ndd1d

dONNnod3aa

HDOLIMS

91

91

13s3¥

1008 Z

Slgy - Ogy

Iv=4

—_—)

3270 Test Description

The Z8001 test utilized a GO/NOGO functional test in which PASS/FAIL
information was recorded as the temperature, logic input levels, power
supply voltage, operating frequency, and clock duty cycle were varied over
the following ranges:

1. Temperature
-55, 0, 25, 70, 125°C

2. Logic Input Levels
Viy held at 0.0 Vv, Viy varied from 2.0 V to 2.5 V
Viy held at 3.5 V, Vyj, varied from 0.4 V to 0.8 V in

3. Power Supply Voltage
4.25 V to 5.75 V in 0.25 V steps

4, Operating Frequency
250 KHz and 500 KHz to 6 MHz in 500 KHz steps

5. Clock Duty Cycle
20% to 80% in 10% steps

Duty cycle was used as a variable parameter during the test to make
testing more convenieat. The clock parameters are not specified as a
function of duty cycle as they are for some processors. A minimum clock
high and low time are specified for the 2Z8001. At 4 MHz, these equate to
a 507% duty cycle. By varying the duty cycle it is possible to vary the
clock high and low times. -

During the test, the clock input high and low voltages were maintained
at the vendor specified limits of Vge~0.4 V and 0.45 V, respectively.
The output comparison levels were 2.4 V and 0.4 V which are the vendor
specified limits for Vgy and Vg, respectively.

The test pattern was run in five passes to ensure that output timing
was checked at the manufacturer specified delays. The first pass checked
AS and DS read, the second checked DS write, the third checked DS 1/0, the
fourth checked MREQ, and the fifth checked the address/data bus (ADO to
AD15).

Figure 4-2 shows a high level flow chart of the test program.

The load circuit shown in Figure 4-3 was connected to the device output
pins. 1t provides 100% capacitive loading (including 3270 capacitance),
70% resistive loading for V3; and 80% resistive loading for Vgy. With the
load connected tue high impedance voltage floats to a value between 1.0 V and
2.0 V. This allows checking of the high impedance state during functional

test,

STARTY

INPUT
SERIAL NUMBER

!

SELECT <
TEMPERATURE

v

SELECT INPUT g
DRIVE LEVEL

1
X

{
4

SELECT POLER |
SUPPLY VOLTAGE 4“"“";

v

SELECT !
OPERATING

FREGQUENCY)

]
¥

SELECT CLOCK
DUTY CYCLE %

I

v
l

RUN TEST
PATTERN ON

SELECTED OUTPUTS!

FIGURE 42 280C1

MO;;\\\\\‘

OUTPUTS?

YES

______b B

\ 4
G
F
MORE -
E FREGUENCIES? > D
vEs
D —=i» €
(// MORE S g
¢ __DRIVE LEVELS? g
o~ ‘
vES
MORE ..
B TEMPERATURES? > G

A\
LE
{ srop)
~EsT FROCRAM FLOW CHARL

V-6

ek .

IK o 1K4142

put AN }‘ 2.5v

PIN

SEpF 1

|
|

NOTE: ALL FZSISTCRS - RNCGS
CAREACTITOR - CKOS

FIGURE 4-3 Z8001 LOAD CIRCUIT

DATA ANALYSIS

Five parts from Vendor L and four from Vendor A were tested. All parts
received for characterization were serialized as indicated in Table 4-1.

TABLE 4-1 DEVICE SERIAL NUMBERS

Device Mark Date
Number Vendor Step Type Code
1 L v Commercial 8043
2 L v Commercial 8043
3 L \Y Commercial 8104
4 L \' Commercial 8104
5 L \ Commercial 8104
6 A W Military 8051
7 A W Military 8051
8 A W Commercial 8052
9 A W Commercial 8052

Vendor L was able to provide V step devices. The V mask step represents
the latest and first fully functional version of the Z800l1 and is the version
that will be qualified. The W mask step parts from Vendor A are one revision
eariier. They have a few functions that do not operate properly. However,
these were not included in the test pattern that was developed so that any
failures that occurred could not be attributed to them.

Iv=7

Vendor L could not supply military grade devices because they were
just updating their test program to permit testing over the military

f temperature range. The two military grade parts from Vendor A were received
as samples since they were not yet marketing their military devices.

The same chip is used for the commercial and military grade devices.
Since the only distinction between the two grades is the temperature and
power supply ranges over which the parts will operate, all devices were
tested over the full commercial and military ranges.

Since a large amount of data was taken and analyzed it is not possible
to include all of the shmoo plots that were generated in this report,
Figures 4~4 through 4-7 summarize device operation over the commercial
range and Figures 4-8 through 4-9 summarize operation over the military
range. A 507 duty cycle was used to guarantee the minimum clock high and
low times at & MHz. Figures 4-4, 4-6, and 4~8 show the number of devices
that passed as frequency and Viy were varied. For these figures, Vi =0.0 V.
Figures 4-5, 4~7, and 4-9 show the number of devices that passed as
frequency and Vyp, were varied. For these figures, Vyiy = 3.5 V. The solid
lines on these plots indicate the specified operating regions,

From Figures 4-4 and 4-5 it can be seen that Vendor L's parts did not
operate over the specified commercial range. Examining the results up to
3.5 MHz it can be seen that V;y had to be raised to 2.1 V for 30% of the
' devices to pass and 2.2 V for 100% to pass. Operation with Vjy = 0.8 V was
! not a problem. The failures at % MHz were duty cycle/temperature, and not
drive level, related. This will ve explained in more detail later.

Figures 4~6 and 4-7 show the performance of Vendor A's parts over the
commercial operating range. From these figures it can be seen that Vi was
not a problem and that the devices would operate at 4 MHz. Vendor A's
devices did not exhibit the duty cycle/temperature problem at 70°C.

It can also be seen that Viy had to be raised to 2.3 V for 100% of the
devices to pass.

Figures 4~8 and 4-~9 show the performance of Vendor A's parts over the
military operating range. From these figures it can be seen that two of
the four devices tested passed for some combination of drive levels and
frequency. It should be noted that of the two devices that passed, one was
commercial and one was military. The other military part (7) did not
operate over the entire voltage range at 125°C. It can be seen from the
figures that Vyy had to be 2.4 V or greater for any of the devices to
operate and even then the maximum frequency was limited to 3.5 MHz. Operation
at higher frequencies was again related to the duty cycle/temperature
problemn.

PRV A SR

No summary plots are included for Vendor L's devices for the military
operating region since none of them operated over the entire voltage and
temperature ranges. The problems that were encountered are explained below.

1v-8

SLIWNI'T "IVOTHANNOD ¥Od SUDIANG ONISSYd

,0L°S2'0 = duay,
AST S 03 41y = 20y
S = §32149] 1ei0]

Y06 = DTLED Aanng

(ZHNH) Asuanbaiy \C 0 - T

S°S 8's Sy e’ §°¢ e’c §°2 82 S°I oI '8

i | 1 I [1 T | I I |

e)) 4) 8 S 9) L4 I B
8 ¢ 8 Z y 4 S y S S S .
e 8 8 2 g § S S 5 5 s|
9 ° 0 Z S 5 S

é 0 ¢ Z S S S

)) 8 e S 5 S

S0 YOGNHA 40 TNIND ValVAK It DRI

02

e

272 ¢i0n)

iy

(=)
U
>
=

[D e ——

= e .-

SLIKIT TVIDYIWNOD Y04 SIDIAZA UNISSVd S,T YOANIA 40 INNOD S=% FANHIA

,0L'SZ'0 - dway
ASZ'S 03 SL7y = A (Zhd) Aduanbausy %0S - 124D 4ang
G = §32JA3(Qg 18BIO] A = TIp

§s @S S ¥y st ee 572 ¢ ST 81 58
I [|] { i ! i 1 I |

Iv-10

§ 8§ 0§ § dgg (aow

1Ip

it : " A oI, 2

13 < smppeop Wil
SLINI'T "IVIONZWNOD ¥0d4 SHOIAYA ONISSVd S,V MOANIA 40 INNOD 9-i7 AMNOI A
J,0L°62'0 = dwdg
ASZ°G 03 G = D0 %0¢ = 919KD £3ng
7 = $3074A9([®30] AO°OQ = JH>
(ZHW) Aduandbau y
$°S 9°S ') o' $'e 9¢ §5°2 ' 4 S°! ¢)
| T | I I | | ! | | |
"
>
e e e ¢ 4 12 =
(s310A)
r4 e £ £ 4 22
HIp
4 4 ’ b 4 €2
14 4 » 14 4 ¥
» » 1/ 14 4 52

- g v T . — R —

e

2,0L'SZ 0 = dway,
ASZ"G 03 Gz 7 = 3D

%06 - 3124D) Lang

7 = S321A2Q [EIO] AG g = HIp
(ZHN) Aruanbal gy
S°'S 0°S S’y e’y S°¢ 8¢ §5°2 82 S°1 0l S°e
| I | l I l 1 I ! 1 1
’ ’ b y 14 14 ’ y ~
14 y 14 y y y 14 14 -
14 14 1 4 y 1 4 14 y y B
1/ 14 14 1 4 b y 14 4 R
14 b b b 4 4 y 14 -

L e s s oo

SLIRI'T "IVIDHEWWOD 04 SHOTAIA ONISSVd S,V HOANIA 40 INNOD £L=-% TANOIA

by
(S110A)
50
I
9'8
'8
38

Iv-12

e

SLINLT AAVIIITK ¥0d SHOTA4A ONLSSVd S,V HOUNAA 40 INNOD 8-% TEND14

0,521°04°62°0°gg- = duway,

ASTG 03 ¢y = DD %06 = 194D Lang
7 = SadyAa(1EIOL {ZliH) Aruandayj rot0 = Tp

S°S 8'S S°r 'y S°E 8°¢ §°e 8’ sl e '8

1 I IR | | | | 1 i | i
8)) 0 e e e 8 8) 0 4 ez
. .
T
9 9) ')) {2 =
s 9 e 9 9 8 (s3ton)
8 8 9 9 0 8 8 9 8 0 0 4 22
HIp
8 9 0 8)) 9 8) 0 é 4 g2
9 9 0 8)) I I I 1 4 ¥
8 9 9 8 I 1 1 2 2 I b4 d 52

SLIWI'l AYVLII'TIN Y04 SIDIAZA HNISSYd S,V YOANAA JO INNOD 6-% TANOIA

,-..IHQO,
DoSZI'0L 97" c5: = dust {ZHH) Aouanbasy

720G = 9124) Lang
7 = §3dyA3Q 1eIOL

AG*g = HIp
$'S 8°s St o'y St 8t §5°2 8¢ S el 58

< < [/ 4 459 (s3ion)

TIA

[-~J
®
®
w®
et
-
Dol |
<~
~
o~
o~
1

'8

- —— e o a2 -] -

Iv-14

- i m

ERg W

Additional shmoo plots are included to illustrate some of the results
obtained. Most of the plots are for Vendor L's devices. Vendor A's devices
operated in a similar manner. Where significant differences in performance
occurred, plots are included for Vendor A's devices also.

Figure 4-10 shows the relationship between Vyy andVgg at -559C, 4 MHz,
and 597 duty cycle. 1t can be seen that as Vgg increases, Vg has to
increase for the device to pass. This is to be expected since the threshold
for NMOS devices is highest at low temperatures and high values of Vpe. It
should be noted that Vyy has to be at least 2.3 V for 80% of the devices
to pass and 2.4 V for all devices to pass. Vendor A's devices performed
in a similar manner and also required 2.4 V for all devices to pass.

Figure 4-11 shows the relationship, for Vendor L's devices, between
ViL and Vgc at 125°C, 4 Mhz, and 50% duty cycle. Since low Vg and high
temperature are the worst case conditions for Vyj one might assume that the
failures at 4.5 and 4.75 volts could be eliminated if Vy; were less than
0.4 V. However, Figure 4-12 shows that the devices failed even when Vyp was
0.0 V. Vendor L was contacted to deternine whetlier they had ever experienced
this problem. They said that they had not and they did not know what might
cause it. They did offzor Lo retest the devices to see ii they obtained
similar results. This option may be exercised at a future date. Figure 4-13
is the same as Figure 4-11 except that it is for Vendor A's devices. It can
be seen that only one of Vendor A's devices passed for all Vi values at
4.5 V and 125°C. This would indicate that the problem was not threshold
related since the failing devices did not pass even when Vyy=0.0 V.
However, at Vgg=4.75 V, all devices passed when Vyj was less than
C.6 V. This does indicates that a threshold problem might exist at high
temperature and low Vece Additional investigation in this area is
reconnended.

Figure 4-14 is a plot of frequency versus temperature at 507 duty
cycle, Voo = 5.0 V, Vg = 3.5 V, and Vyy, = 0.8 V. This plot is for
noninal Vce so that the Vi and Vyp, values used would not be affected
by the variation in temperature. 1In examining the figure, one can see
that the nmaxinum frequency at which the device operates decreases with
increasing temperature. Yormally this is expected since NMOS slows down
with increasing temperaturc. However, in this case the device operates
only up to 3 !Hz even though it is specified to operate at 4 MHz,

Figure 4-15 is the same as Figure 4-14 except that the duty cycle was
reduced to 40%. 1In this plot a definite improvement in performance is seen
at higher temperatures, All devices now operate at 4 MHz, at 70 and 125°C.
However, low temperature performance is now sacrificed.

Figures 4~16 and 4-17 are plots of duty cycle versus frequency at
-55 and 125°C, respectively. V¢p and the input drive levels are the same
as in Figures 4-14 and 4-15. In comparing Figures 4-16 and 4-17, it can be
seen that device performance is significantly degraded for the higher duty
cvcles at 1259C. The arca to the left of the solid lines indicates

v=-15

.
N
:
[]

s e

28001 CHARACTERIZATION

COUNT OF PASSING SNS (S TOTAL)

L L) 1] 1 J
2.5 s| s s s s s })s | !
2.4 5 5 5 5 5 5 4 _ }
2.3) 5 5 5 5 5 4 . B
DRIVE LEVEL
2.2 s | 5 s 5
(VOLTS)
a“'T 5 5 4 - . . . L.
2.9 s |l . . .+ 1. o H

4.25 4.5 4.75 5.6 5.25 5.5 5.75
vee (VoLTS)
Vig = 0.0V
Frequency = 4 MHz
Duty Cycle = 507

1. Viy has to increase with increasing Vcc for the devices to
operate at -55°C. These are worst case conditions for VIH.

2. Vendor A's devices performed in a similar manner,

FIGURE 4-10 Vg VS. Vgc AT -55°C FOR VENDOR L DEVICES

v-16

l‘|lIIllIlIllllllll""""""""""""!'!!’!!""""""'.....'....-..--.

1 28001 CHARACTERIZATION

| COUNT OF PASSING SNS (5 TOTAL)

1 N L 1 1 - L
.8 . . 2 5 5 5 4 i
.?) . 2 5 5 5 4 i
: DRIVE LEVEL
i .6 . . 2 5 5 5 4 |
L
; (VOLTS)
b
[.5 . . 2 5 5 5 4 L
. . . 2 5 5 5 4 -

4.25 4.5 4.7 S.o 5.285 5.5 5.75

vee (VOLTS)

Vig = 2.5 V
Frequency = 4 MHz
Duty Cycle = 50%

1. Device performance deteriorated if Vo was less than 5V. TLow
Vcc and high temperature are worst case conditions for Vyp,.
Problem does not appear to be threshold related however because
devices did not pass even when V[was 0.0V, (See Figure 4-12),

FIGURE 4-11 v ; VS. Voo AT 125°C FOR VENDOR L DEVICES

28001 CHARACTERIZATION

COUNT OF PASSING SNS (S5 TOTAL)

1 1 I 1 J L
2.5 .|l . 2 s s s 14 L
a“ . . a 5 5 5 4 -
2.3] . . 1 5 s s 4
DRIVE LEVEL [
{ a.aq . . 1 5 5 5 4 -
(YOLTS)
e. ‘4 . . 1 5 5 5 4 =
2.0 . . 1 s s 5 | 4 _

4.25 4.5 4.75 S.¢ 5.25 5.5 5.7%

! vee (VOLTS)

Vi = "0V
Frequency = 4 MHz
Duty Cycle = 407

1. Kone of Vendor L's devices passed at Voc = 4.5V indicating that
Vii threshold was not the cause. At 4.75V two devices passed if
Viy was greater than 2.4V, Vendor L could not explain reason for
this trend. Low Vcc and high temperature are best case conditions
for Viy.

i

2. One of Vendor A's devices passed at all Vyy drive levels for V¢c
= 4,5V and all four passed at Voo = 4.75V,

FICURE 4-12 Vy VS. Vcc AT 125°C FOR VENDOR L DEVICES

v-18

o —

v ey Y.

25201 CHARACTERIZATION

COUNT QF PASSING SNS (4 TOTAL)

1 il 1 1 i’ A d

8 . 1 3 4 4 4 4 L ,
? . $ 3 4 4 4 4 -
DRIVE LEVEL
6 . 1 3 4 4 4 4 -
(VOLTS)
.5 . 1 4 4 4 4 4

yce (UoLTS)

YIH = 3,5V
Frequencv = 4 MHz
Duty Cycle = 50%

1. Only one device passed when Vgc = 4.5V. This was also true
when Vy1, was 0.0V and Vg was varied.

2, At Voo = 4.75, all devices passed when Vyj was less than 0.6V
indicating a threshold svoblem might exist.

FIGURE 4-13 Vyp VS. Vge AT 125°C FOR VENDOR A DEVICES.

28001 ChARACTERIZATION

COUNT OF PASSING 5NS (S TOTAL)

i | L 1
5.5 | . < T . .
4 5 4 . .
45 | s 5 5 . . L
5 5 S] .
35 |!s 5 S 5 JE
FREQUENCY 5 5 5 5 5
! i) a5 .5 s 5 s 5|}
s s5 5 5
1.5 4| s 5 5 5 5] |
5 s 5 5 5
.5 1ls 5 S 5 s||
55 o0 25 70 125
; © TEMPERATURE
! (DEGREES C)
viL = 0.8V
Vig = 3.5V
Veg = 5.0V

s SN
—
.

Duty Cycle = 507

Nominal Vee was used to minimize threshold effects.

, 2. Maximum operating freauency decreases with increased temperature,

Vendor L's devices operate up to 3 MHz.

3. Vendor A's devices also dropped out at 3 MHz at 125°C but passed

up to 4 MHz at 70°C,

P FIGURE 4-14 FREQUENCY VS. TEMPERATURE AT 507% DUTY CYCLE FOR VENDOR

I. DEVICES

Iv-20

28001 CHARACTERIZATION

COUNT OF PARSSING SNS (S TOTAL)

1 L A 1

ss]t

P
s . .1 4« . L

4 S5 5 5
asdls ss s s|f

FREQUENCY § 55 5§ 5
‘ i) a5ls s s s s|L

? 5 5§ 5 5 5
1sdls ss s sit

, § S5 5 S
s4ls ss s s|f

-55 9 &5 70 125

TEMPERATURE
(DEGREES C)

Vi, = 0.8V

VIH = 3.5V
| Vee = 5.0

Duty Cycle = 407%

1. Nominal Vgc was used to minimize threshold effects.

At 40% duty cycle, all of Vendor L's devices passed to 4 MHz at
high temperatures but one device dropped out at -55°C. A longer
clock low time is required at high temperatures but it deteriorates
low temperature performance.

s>
N
.

3. Vendor A's devices also performed better at 40% duty cycle and 125°C
with all four passing up to 4 MHz.

. FIGURE 4-15 FREQUENCY VS. TEMPERATURE AT 40% DUTY CYCLE FOR VENDOR L
DEVICES

1v-21

28001 CHARACTERIZATION

COUNT OF PASSING SNS (5 TOTAL)

Box 5 s s S 5) - - . . - . o

70x S S

60x 5 5
k puTY
S0% 5 S

| CYCLE
40% S 5

Jex 5 5 . |
20x% S S . - ;
.5 1.5 2.5 3.5 4.5 S.S

} FREQUENCY (MHZ)

VIL = 0,8V
VIH = 3.5V
VCC = S.OV q

Temp = -55°C .

1. Nominal Vgc was used to minimize threshold effects.
, 2. All of Vendor L's devices passed within the specified range.

4 3. All of Vendor A's devices passed within the specified region also.

4. At low temperature, both vendors' devices operated better with
shorter clock low times (higher duty cycles),

. FIGURE 4-16 DUTY CYCLE VS. FKEQUENCY AT -55°C FOR VENDOR L DEVICES

Iv=-22

B 23001 CHARACTERIZATICN

‘ COUNT OF PASSING SNS (5 TOTAL)

“x 5 s . - - - - - . -) -

70x S S

6ox 5 5
bury
Sox 5 5

CVCLE
o 45 5 5

30x 5 S

.5 1.5 2.5 3.5 4.5 5.5

FREQUENCY (MHZ)
VIL = 0,8v
Vig = 3.5V
Vee = 5.0V
TEMP = 125°C

1. Nominal Vec was used to minimize threshold effects.

‘Q 2. At high temperature, Vendor L. devices are sensitive to clock
low time and failures occur.

Al

3. Vendor A's devices exhibited the same problem,

—— e . o

FIGURE 4-17 DUTY CYCLE VS, FREQUENCY. AT 125°C FOR VENDOR L DEVICES

T e S b g o Pt .. e e S Pp————

the duty cycles for which the minimum clock high and low times are met
3 at each frequency. In Figure 4-15 it can be seen that all devices pass

| within the specified range. However, at 125°C failures occurred at
1.5 MHz and above 3 MHz. As previously mentioned this problem limited
70°C operation for Vendor L's parts to 3.5 MHz, Vendor A's parts exhibited
the same problem at 125°C but not at 70°C. Vendor L was questioned
about the problem and indicated that they were aware of it. The Z8001
is a dynamic device and the clock low time is used for charging of dynamic
nodes. At high temperatures parts fail when operated at the minimum
clock low tipe. The problem is instruction dependent and existed in
previous versions of the device. The product engineer did not have available
the list of instructions which were affected. He did indicate that the
problem was remedied somewhat with the last mask change. Vendor L is
planning a die shrink and indicated that the problem should be eliminated

with it. 4
A 6 MHz version of the Z800l1 will also be qualified. Some of the devices

did pass at 5.5 MHz but not over the entire commercial or military ranges.
It should be noted that the parts tested were sold or sampled as 4 MHz

devices.

A minimum frequency of .5 MHz is specified for the device. The parts
'~ were tested down to .25 MHz. It was found that if a device operated at
.5 MHz for a given set of conditions then it would also operate at .25 MHz

at these conditions.

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions were reached as a result of the
characterization:

1. Both vendors' parts exhibited similar performance characteristics
for any given set of conditions.

2. The devices are sensitive to the Viy level and this limit may
have to be relaxed. Vendor A's devices required a slightly
higher logic one level than Vendor L's over the commercial
range. Both vendors' devices required a logic one level of
at least 2.4 V over the military range.

j 3. Operation at 4 MHz is a problem at high temperature. This is
caused by the limit on clock low time. Operation at 6 MHz will
also be a problem since the clock low time is even less.

' 4, The .5 MHz minimum frequency limit is conservative,

5. Neither vendors' devices would operate well at 125°C when V¢ was
] less than 5 V. The data indicated that this was not a
) Vi;, threshold problem for Vendor L's devices but that it might be for

Vendor A's,

IV=24

The same chip in used fur the Z8002 microprocessor and the results of
this characterization should be indicative of its performance under the same
conditions.

Since the characterization software and hardware are in place,
additional data, using a larger sample size, should be taken to assess the
performance characteristics of other parameters. These include clock
thresholds and input/output timing. In addition, the low

voltage/high temperature problem should be investigated more thoroughly.

1v-25

SECTION Vv

TEST DEVELOPMENT FOR THE Z8000

OBJECTIVE

The purpose of this evaluation was to review the tests which Vendor L
submitted for inclusion in the slash sheet for the Z8000. The approach
used is defined in "The Procedure for LSI Functional Test Development”,

It has been documented in the RADC report entitled "Electrical
Characterization of Single Chip Microprocessors and Other LSI Devices" and
will not be repeated here.

SUMMARY

Vendor L provided an assembly listing of the Z8000 functional test
patterns along with a definition of the timing that they use for them,
Vendor L performs a dynamic functional test on the Z8000. The timing
information was evaluated first since Vendor L indicated that the sequence
of vectors in the functional test pattern was subject to change. It was
found that not all switching speed parameters were tested during the
functional test. Vendor L was contacted and indicated that they were
modifying their test program. All parameters would be tested once this
revision was completed.

A list of tests required to check the Z8000 was developed and forwarded
to Vendor L to assist in the functional test evaluation. A FORTRAN program
was also developed to aid in the evaluation which will be completed on
another RADC contract.

CIRCUIT DESCRIPTION

The 28000 CPU, shown in Figure 5~1, is available in four versions.
All are sixteen bit, fixed instruction microprocessors fabricated with a
high density n channel silicon gate process. They require a single +5 volt
power supply and an external clock. The Z800l and Z8002 operate at a
maximum frequency of 4 MHz while the 2Z8001A and Z8002A operate at 6 MHz.

The segmented Z8001(A) can directly access 8 megabytes of memory and
the non-segmented Z8002(A) can access 64 kilobytes. By using the seven
segment lines of the Z8001(A), it is possible to divide the eight megabyte
address space into one hundred twenty-eight, 64 kilobyte segments. The
instruction sets are identical, but due to the larger memory space of the
Z8001(A), software compatibility is upward only from the Z8002(A) to the

Z8001(A).

WWVIOVIa D014 00087 1-6 WWNOT4

anv
- VINIL HSIUSIV A W0uiN0d |<— o013

MILNNOD HSINIIV
135440 ¥IINNOD WYUOOUS QYIHYHOOY uw-m.au.. u...u"—.n vm
— NOHLINV1ISN viNDD —

ndd - 20NV

_ _ -— an
SNY viva TYNUILNI WWINOD

el =
1enVNILN - 3038

WNEILRD
: -

2 A8 ¥IINININOM All
- 135
AF
\—

ing-Ons Af
ss3voay
on N
ANIWOES Sn.zhoo wouinoy | om ;
l phe OUOW LV [o— W =~
¥3LSIDIN
ISRON ININDIS
, OWINOD .
A” - Al w3103 _ _ — _ 0WIN0D r nvsme
siqv-sgy ¥3i8103W 315038 A sne < 0SNG
sns vivo vivo K
rssavoay sivoay AHV \ |
V200983 ¥300330 |- 0%
wouonuism | | moromuise ONLNGD] e o0
“oe o

| JLAGI0UOM
Lo suumovv
wOuYRUOM [MILSANIVENON

MmvS o %9
NILSASNGD

I
|~ U9
- 49

NOINWASNE

IRE
i

IOUINOD
U—..“Oa,- i vIoN
A\

-
>

Rl
PR

. Y

_— DTS 070> ™ Rl 7=t 2y . Corgrbe st =

The microprocessors feature two parallel memory spaces (system and
normal) each of which is subdivided into program code, stack, and data
spaces. In system mode, the processor can use the entire instruction set
while in normal mode it can use only a subset of the instruction set. The
1/0 space is separate from the memory space and is 64K ports for both
devices.

Both microprocessors support multiprocessing with dedicated input and
output lines and specialized instructions. The Z8001(A) can be used with a
memory management unit which uses a dedicated interrupt input. In addition,
there are three interrupt inputs common to both the Z8001(A) and Z8002(A). <

The Z8000 architecture features sixteen, 16-bit general purpose
registers of which only one has any restrictions on its use as an address]
component. Eight of the registers can be subdivided to provide sixteen,]
8-bit registers. Register concatenation, required for 32 and 64 bit
operations, is a predefined function which requires no special commands.

DISCUSSION OF THE FUNCTIONAL TEST EVALUATION PROGRAM

A FORTRAN program was developed to facilitate the evaluation of the
functional test vectors., This program creates a record of the register
contents on a vector by vector basis. Other records are created for the
op codes used, data input or output, and control line inputs and outputs.
This information is . used to determine how well the criteria in the
28000 checklist, .5 . “e¢d below, are met.

The program nas been tested for all known op codes and conditions in
the vendor's li ~rature. A subroutine must be written to input the vectors
into the program. This is dependent on the format and media (tape, disk,
etc.) in which the vectors are supplied and will be completed when the
finalized vector sequence is received from Vendor L. Additional information
concerning the organization and use of the program will be included in the
report detailing the completed functional test evaluation.

DISCUSSION OF THE FUNCTIONAL TEST

Since the Z8000 is a very complex device, it was sectioned into
funct "onal blocks for evaluation., A list of tests required to check each
section was developed. This checklist was sent to Vendor L to facilitate
the evaluation which will be completed on another RADC contract.

The following is the checklist that was sent to Vendor L.

SSSEE—

28000 FUNCTIONAL TEST CHECKLIST

‘ 1) ALU and Control Circuits

A) General
1) Have all addressing modes of all op codes been tested?
2) Have all non implemented op codes been tested for proper
trapping?
3) Have all priviledged instructions been attempted under both
system and normal operating modes?

i 4) Have all “automatic"” op codes been tested for correct
operation? This includes the verification of the function,
modification and verification of address and counter register
contents, and termination when the counter register is
zero or when the condition code is satisfied.

5) Have the contents of each register affected by the op code

under test been verified prior to further modifications?

B) Load and Exchange Instructions

i 1)

2)

3)

4)

5)

6)

Has the clear command been tested for byte and word memory
locations and registers and for odd and even addressed bytes
and registers?

Has the exchange command been tested for byte and word
operands, for odd and even addressed bytes and registers,
and by single bit changes?

Has the load command been tested for byte, word, and long
word operands and for bytes on odd and even boundaries?
What is the effect of addressing a long word load to an
odd numbered register “pair”?

Is LDA tested in both the segmented and non-segmented modes?
Is LDAR also tested? Has it been verified that the stored
address will function with the reserved bits in their
undefined state? What is the effect if an odd register
"pair"” is selected?

Is LDK tested for both four and eight bit constants?

Is LDR tested for byte, word, and long word operands and

for operands on odd and even source and destination addresses?
What is the effect if a long word load is addressed to an

odd register “pair"?

7)

8)

9)

10)

C) Arithmetic

1)

2)

3)

4)

5)

6)

7)

8)

Is LDM tested for having loaded the correct number of registers?
Is the wrap around of registers greater than sixteen tested?

Has it been verified that none of the load instructions affect
the flags? This should be done with the flags set at both one
and zero.

Have the push and pop functions been tested with both word

and long word operands? Have all possible registers and pairs
been tested for autodecrement (push) and autoincrement

(pop) functions? Has the conflict between the immediate

push word and the immediate push long word commands been
resolved?

llas the operation of all of the load and exchange instructions
been verified by data reads?

Has the add function been tested by adding the four possible
bit combinations with and without carry for each bit position?
Have the two add instructions been tested for both word and
byte operands?

Has the subtract function been tested by performing the same
tests as for the add function?

Has the compare function been tested for byte, word, and
long word operands?

Has the increment function been tested for both word and byte
operands?

Has the decrement function been tested for both word and byte
operands?

Has the multiply function been tested for both data types?

Has the divide function been tested for both data types? Has
the instruction been aborted by the division by zero,
underflow, and overflow conditions? Has the abort been
confirmed by both the divide register pair and divide register
quadruple variant?

Has the sign extension instruction been tested for byte, word,
and long word operands?

PO

9)

10)

Have all thirteen possible actions of the decimal adjust
function been verified? How is the decode circuitry for the

decimal ad just implemented? Has it been exercised sufficiently

to detect all stuck at faults?

Has the flag operation of all of the arithm-tic instructions
been verified for all possible flag changes?

D) Logical Instruction

1)

2)

3)

4)

1)

2)

Have the AND, OR, and XOR instructions been tested by the
application of the following patterns to each bit position?

a) (v,0), (0,1), (1,0) for OR operations
b) (0,1, (1,0), (1,1) for AND operations
c) (0,0), (0,1), (1,0), (1,1) for XOR operations

d) Have all three instructions becn tested fcr byte and
word operands?

Have the complement instructions been tested by complementing
each bit for both =zero to one and one to zero transitions and
for word and byte operands?

Has the test instruction been tested for both word and bvte
operands?

Has the correct operation of flags been tested and verified
for each logical instruction and for each possible flag
combination?

E) Program Control

Have all of the program control operations been tested, in
both the segmented and non-segmented modes, to insure the
correct selection of the implied stack pointer register or
register pair?

Where used, all condition codes should be tested for correct
operation in both the true and false states, while all other
flags which are not referenced remain in the opposite state.

a) Is call tested in both segmented and non-segmented modes?

b) Is call relative tested as call and for both positive and
negative 2K jumps?

¢) Are DJNZ/DBJNZ tested for the full +2, -252 range?

V-6

F)

G)

Bit

1)

2)

3)

4)

d) Is JP tested for all condition codes and in both segmented
and non-segmented modes?

e) 1Is JPR tested for all condition codes and for the full
~254/+4256 range?

f) 1Is RET tested in both segmented and non-segmented modes and
for all condition codes?

g) Is system call tested in both segmented and non-segmented
modes? In the decrement of the stack pointer register(s)
verified?

h) 1s IRET tested in both segmented and non-segmented modes?
Are the decrement of the stack pointer(s) and disposition
of the stack data verified?

Manipulation

Is BIT tested by setting the selected bit to a true and false
state while all other bits are in the opposite state?

Are all bits tested and are static and dynamic operations on
word and byte data verified?

Are bit set and reset instructions tested as in (1) above?

Are the test and set instructions tested by setting all bits

to zero prior to testing the instruction? Are the proper flags
set?

Is TCC tested for all possible condition codes, true and
false? Is it verified that the indicator bit is set, but
not reset, for byte and word operands?

Shift and Rotate Instructions

1)

2)

3)

4)

5)

Insure left and right rotates function correctly for both
single and double position rotations and for byte, word,
and long word operands.

Insure proper set aud reset of carry bit for both single and
double position rotations of the rotate through carry commands
and for byte and word operands.

Insure digit rotates function correctly.

Insure correct flag sets/resets for the above commands for all
possible combinations of the flag bits.

Insure left and right dynamic shifts function correctly,

H)

6)

7)

8)

Insure left and right static shifts function correctly,

Insure the failure of the instruction if the number of
positions to be shifted is greater than that allowed for byte,
word, and long word data types. Insure that zero shifts, where
undefined, are nondestructive of register data, and that the
flags, where defined, are set as required by the data
contained in the register(s).

Insure that all possible combinations of flag sets/resets are
performed as required by the instructions and data.

Block Transfer and String Manipulation Instructions

1

2)

3)

4)

Insure that the transfer and string instructions are
interruptible and that the instructions continue correctly
after an interrupt has been serviced.

Conpare commands

a) Insure that the commands function for both word and byte
operands.

b) Insure that the loop counter register functions properly.

¢) 1Insure that the pointer registers increment/decrement as
required by the instruction.

d) Insure that all flags are set and reset as rejuired by
the data.

e) Insure that "automatic” functions repeat as required,
function as specified, and terminate on both counter at
zero and condition code satisfied conditions.

Load Commands

a) Insure that the pointer registers are incremented or
decremented as required.

b) 1Insure that the automatic functions repeat as required,
function as specified, and terminate on counter register
at zero.

c) Insure that the flags are not affected.

Translate Test Commands

a) Insure correct translated address output.

?-—‘—-_‘ ; b

AT Lm T TR Ee T e e T T T

SIS S

)

N))

Input/Output

D

2)

3)

4)

5)

CPU

1)

2)

3)

4)

5)

6)
7)

b) Insure correct flag setting/resetting.
¢) Insure correct pointer register operation.

d) Insure correct termination on either counter register at
zero or condition codes non zero as applicable.

Insure operation of system trap for all instructions when
operating in normal mode.

Insure proper register modification and termination of the
"automatic” input and output instructions. Insure
interruptibility and continuation after interrupt of

these instructions.

What happens when an even byte access is attempted for normal
I/0 and odd byte addressing is attempted for special I/07
Should these conditions be tested and are they ?

Insure that word and byte operands are input or output as
required.

Insure that the correct flags are set or reset as required.
Control Instructions

Is COMFLG tested by complementing each of the flags from a
1--0 and 0--1? It should be verified that only one flag is
affected at a time. 1Is the instruction tested for the

condition where no flag is defined?

Is DI tested by disabling each interrupt separately and then
requesting service in both system and normal modes?

Is EI tested as in (2) above?

Is halt tested for continued memory refresh and recognition of
interrupts, reset, and bus requests?

Is LDCTL tested for each possible register and are the register
contents subsequently verified, in both system and normal modes?

Is LDCTLB tested and are the contents of the flag byte verified?

Is LDPS tested for segmented and non-segmented operation, in
system and normal mode, and are the register contents verified?

8)

9)

10)

3 1)

2)

PPy S

3)

4)

5)

6)

Are nultiprocessor instructions (MBIT, MREQ, MRES, MSET) tested
for the proper set or reset of the multimicro out line? Are the
correct functioning of the test instructions and flag
sets/resets verified? Is register manipulation of the MREQ
instruction verified? Are all nultiprocessor instructions
tested in system and normal modes of operation?

Is NOP tested?

Are set/reset flag commands tested by changing each selected
flag while all other flags remain in their previous state?
Is the condition where no flag is defined tested for each
command? Are the register contents verified?

| 3) External Trap/Interrupt Control

? . A) General

Has it been verified that simultaneous traps/interrupts are
prioritized as shown in the list below (descending order)

1) reset

2) internal trap

3) non-maskable interrupt
4) segment trap

5) vectored interrupt

6) non-vectored interrupt

Has it been verified that reset is serviced regardless of
processor state?

Has the nesting of interrupts and traps been verified?

Has it been verified that the correct PSAP vectors are
loaded into the CPU by the interrupt and trap requests?
Has it been verified that the correct FCW is loaded?

Has the processor's change from normal to system mode been
verified for all traps and interrupts?

Has the instruction fetch abort been verified for interrupts
and traps? Has proper PC operation been verified for this
condition?

v-10

b B) Non Maskable Interrupts

] 1) Has it been verified that this interrupt is asynchronously
detected by activating it at various times?

2) Has it been verified that this interrupt is edge triggered by
holding it in the active state and observing that it is
serviced just once?

C) Nonvectored Interrupts

1) Insure the mask bit is functional by testing both true and false
masks with all other mask bits held in the opposite state.

2) Insure that the vector is correctly translated as a PSAP
{ address pointer.

3) Insure that the input is sampled only during the last clock
cycle of an instruction.

4) When will an interrupt be accepted if requested during the
first clock cycle of an EI instruction? Is this verified?

D) Vectored Interrupts

@ 1) Insure the mask bit is functional by testing both true and false
masks with all other mask bits held in the opposite state.

2) Insure that the vector is correctly translated as a PSAP
address pointer.

3) Insure that the input is sampled only during the last clock
cycle of an instruction.

4) When will an interrupt be accepted if requested during the
first clock cycle of an EI instruction? Is this verified?

E) Notes

1) Each interrupt or trap should be tested with all others
inactive, except during the testing for interrupt priority
and nesting.

2) The transfer of the correct FCW and PC counter must be
verified.

3) The storage in the implied stack of an identificr and the
! PC and FCW must be verified for all traps and interrupts.
This will require the storage of 4 words for the Z80CI,
but only 3 for the Z8002.

e

|
|
I

5)

6)

7)

Multi Micro Control

A)

Bus

A)

B)

c)

CPU
A)
B)
©)

D)

Is the micro in line received? 1Is 1t verified with the micro input
test instruction?

Control

Insure the tri state function of all processor outputs,
except BUSAK, after the machine cycle in which the BUSRQ
was requested.

Insure BUSAK is asserted when (A) occurs.

Insure return to normal operation 2 clock cycles after BUSAK has
been released.

Status Information

Insure that the status lines can reflect all possible CPU status.
Insure that the.N/§ line reflects the processor control bit.

Insure that the R/W line reflects the current operation's function.

Insure that the B/W line reflects the current operation's function.

Register Control

A)

B)

0)

D)

E)

Have all registers (including both sets of stack pointers, the
refresh register, the FCW, NPSAP register pair, and the PC
register pair) been tested for bit independence by having each
bit assume a one and a zero state while all other bits, either
individually or collectively, are in the opposite state?

Can all word length and byte length registers be addressed/selected?
For implied stack operations, is the correct stack register selected
by referencing the system/normal mode bit? Has segmented/
non-segmented operation been tested?

Have the address/data and segment number outputs been tested for
bit independence by having each bit assume a one and a zero
state while all other bits, either individually or collectively,
aré in the opposite state?

Has it been confirmed that register RO follows R15 in the
multiple register load commands?

What are the results of attempting paired and quad register

operations on odd boundaries? Is it necessary to attempt these
operations? Are they done?

v-12

i

F)

G)

8) Cpu

A)

i B)

©)

Has it been verified that any register may act as a counter
(looping commands), stack pointer or index (shift, rotate
commands)?

Has the segment register been tested for arithmetic isolation
from the PC offset? Is this done?

State Control

Insure refresh operation continues when STOP is applied.

1) Insure one refresh cycle after the release of STOP.

2) Insure that STOP is sampled on the falling edge of the clock,
preceeding the second word fetched, when the EPU bit is set in
the control word and an extended instruction has been fetched.

3) Insure that STOP is sampled on the falling edge of the clock,

of the first cvcle of an instruction fetch, if the EPU bit is
not’ set.

Test reset function to

1) 1Insure 5 cycle response of processor to RESET.

2) Insure that, after RESET is inactive for 3 cycles, the
processor fetches 3 words (8001) or 2 words (8002).

3) Insure that the segmented response occurs even when
processor was operating in the non-segmented mode.

Insure that the WAIT line functions

9) Miscellaneous

A)

B)

High Impedance Capability

1) Insure that ADO-AD1S, AS, DS, MREQ, R/W, B/W, STO-ST3,
N/S, SNO-SN6 enter the high Z state as required by the
bus request/acknowlege sequence.

2) Insure ADO-ADIS enter high Z state when internal cycles
occur and during wait states.

Insure the function of the refresh circuits

1) Masked and non-masked operation.

2) Insure multiply instruction functions with refresh running.

-

9]

k)]

4)

5)

Test all possible refresh ratios and verify their correct
operation.

Insure that refresh is accomplished before an interrupt or
trap is honored (simultaneous arrival of requests).

Insure that the auto refresh of skipped refresh address
occurs after a skipped refresh period, along with the normally
occurring refresh.

Other architectural considerations

1)

2)

3)

Is the program counter incremented by the ALU or separate)
circuitry? 1f a separate circuit is used, it must be verified
that it functions as specified. This should include testing
which verifies the change of state of the most significant

as well as low order bits. Isolation of the offset value

from the segment value should also be verified, using the
overflow of the offset register as the test vehicle.

Is a separate arithmetic unit used to increment or decrement
the address registers or to decreuent the counter register
in the auto increment/decrement instructions? If so, this
unit should be tested as in (1) above.

Several constant values are supplied to the ALU. These include
the decimal ad just command's correction values, the

incremental or decremental values for the auto increment

and decrement instructions, etc. All constants should be
verified during the functional test.

L I I W

APPENDIX A

Z8001 TASK BENCHMARKS

28001 Block Move

This routine moves a block of data from one point in memory to any
other point in memory.

Register Use RR2 Address of the first word of the source block
RR4 Address of the first word of the destination block
R6 Number of words to be moved

Symbol Table Stara: Address of first word, source block
Stard: Address of first word, destination block
Count: Number of words to be moved

Command Bytes Cycles Comment
LDL RR2, #Stara 6 11 Initialize register
LDL RR4, #Stard 6 11 Initialize register
LD R6, #Count 4 7 Initialize register
LDIR RR4, RR2, R6 4 11 + 9n Perform move and loop
1
Total bytes: 20
Total cycles: 40 + 9n ?

where n is the number of array elements

2. 28001 Array Addition

This routine adds two arrays of equal arbitrary length, composed of 16
bit words, located anywhere in memory. The result, also assumed to be
16 bits, is then stored in any desired memory location.

Register Use RO Result of addition
Rl Offset of all three terms
R2 Number of elements to be added
RR4 Base register for A array
RR6 Base register for B array
RR8 Base register for result array

f Symbol Table A: Offset value for A array
& B: Offset value for B array
C: Offset value for result array

\ Count: Number of elements to be added
) Conmand Bytes Cycles Comments
LDL RR4, A 6 11 Initialize registers
LDL RR6, B 6 11 Initialize registers
LDL RR8, C 6 11 Initialize registers
CLR RI1 2 7 Initialize registers
LD R2, #Count 4 7 Initialize registers
Loop LD RO, R1 (RR4) 4 14 First word loaded
ADD RO, (RR6) 2 7 Second word added
LD RO (RR8), RO 4 14 Result to desired array
INC R1, 2 2 4 Index register updated
INC R7, 2 2 4 B array pointer updated
DJNZ R2, Loop 2 11 Loop if not all added
Total bytes: 40
Total cycles: 47 + 54n]

where n is the number of array elements

| 3. Z8001 Array Multiplication

]

’ This routine multiplies two arrays of equal arbitrary length, composed

‘ of 16 bit words, located anywhere in memory. The 32 bit result is then

stored in any desired memory location. 1

Register Use RR2 Results of multiplication
R4 Number of elements to be multiplied
RR6 Base address of multiplier array

3 RR8 Base address of multiplicand array

RRI0 Base address of result array i
Symbol Table A: Base address of multiplicand
B: Base address of multiplier
{ C: Base address of product array
L - Count: Number of elements to be multiplied
E : Command Bytes Cycles Comment
! LDL RR6, #A 6 11 Initialize register
‘ LDL RR8, #B 6 11 Initialize register
LDL RR10, #C 6 11 Initialize register
LD R4, #Count 4 7 Initialize register
‘ i Loop LD R3, (RR6) 2 7 Load multiplicand
? MULT RR2, (RR8) 2 70 Perform multiplication
| LDL (RR10), RR2 2 17 Store result
INC R7, 2 2 4 Increment address pointer
INC RY, 2 2 4 Increment address pointer
INC Rll, 4 2 4 Increment address pointer
DJNZ R4, Loop 2 11 Decrement element count
and loop

Total bytes: 36

Total cycles: 40 + 1l7n

where n is the number of array elements

& 4. 78001 Array Sort

| This routine sorts an arbitrary length array of 16 bit words into
descending order. The resulting array may be located anywhere in
memory, while the source array is destroyed.

Register Use R0 Largest value found
R3 Working counter
R4 Number of words to be sorted
R5 Working counter
RR8 Source array base address
RR10 Destination array base address !
RR12 Working address in source array
RR14 Address of largest word

Symbol Table A: Unsorted array base address
B: Sorted array base address
Count: Number of words to be sorted

1 Comnand Bytes Cycles Comment
1. LD R4, #Count 4 7 Initialize registers 3
E 2. LD R3, R4 2 3 Initialize registers
3. LD 1 RR8, #A 6 11 Initialize registers
f 4. LD 1 RR10, #B 6 11 Initialize registers
f 5. Oloop LD R5, Ré4 2 3 Initialize inner loop
' 6 LD 1 RR2, RR8 2 5 Initialize inner loop
7. 1Iloop LD RO (RR2) 2 7 Update largest word
8. LDL RRl4, RR12 2 5 Save location of that
word
9. CPIR RO, RR12, R5, GT 2 11 + 9n Compare to string
10. JP 7, Iloop 4 8 Update if larger
11. LD (RR10), RO 2 8 Transfer to sorted
array
12, CLR (RR14) 2 7
13. INC R11, #2 2 4 Increment pointer
14, DEC R3, #1 2 4 Decrement outside
counter
15. DJIJNZ R4 Oloop 6 10 Jump if not all
sorted

Total bytes: 46

Worst case cycles 9n2 + 72n + 32 + 12(142+3...(n-1))
Best case cycles 9nZ + 72n + 32

Where n is the number of array elements

!
A-4
{
!
| .

! Timing notes

| Worst case timing, when the array is in ascending order, will require that
lines 7 and 8 be repeated (n -~ (D - 1)) times, where D is the number of
words already sorted. The best case timing, with the array already in
ascending order, will not repeat these lines at all.

5. 28001 Interrupt Service

the 8086 IDIV instruction
Action

Latency
Abort following instruction fetch
Interrupt acknowledge
Save 4 word registers
Get new processor status
‘ Save 8 word reglsters
Restore 8 word registers
Return from Interrupt

i Total cycles

A-6

Cycles

107
3

8
36
12
72
64
16

= 318

Time required = .08 msec

This routine services an interrupt storing 8 word length registers and
restoring them before returning to the main routine. The latency time
is that of a register word length division, which is comparable to

Comment

DIV, Register

Push FSW and PC
Load new FSW and PC
Push

Pop

IRET

1.

——h— e -

APPENDIX B

8086 TASK BENCHMARKS

8086 Block Move

This routine moves a block of data from one point in memory to any
other point in memory

Register Use

Symbol Table

Command

CLD
MOV
MOV
MOV

MOV
MOV

MOV
Mov
REP

#iStara
#Stard
#DSEG

DI,
sI,
AX,

ES, AX
AX, #SSEG

DS, AX
CX, #Count
NZ MOVS

SI Offset of first word of destination array

DI Offset of first word of source array

ES Segment where destination string is to be located
DS Segment where source string is located

CX Number of words to be moved

Of fset of first word's location in destination

Clear direction flag
Destination index set
Source index set
Destination segment to
accumulator

Destination segment set
Source segment to
accunulator

Source segment set
Count register initialized
Perform moves

Stara: Offset of first word of source array
Stard:
array
DSEG: Destination segment
SSEG: Source string segment location
Count: Number of words to be moved
Bytes Cycles Conment
1 2
3 /.
3 4
3 4
2 2
3 4
2 2
3 4
2 9 + 17n
Total bytes: 22
Total cycles: 35 + 17n

where n is the number of array elements

F o 2. 8086 Array Addition
{ This routine adds two arrays of equal arbitrary length, composed of
16 bit words, located anywhere in memory. The result, also assumed to
be 16 bits, is then stored at any desired memory location.
Register Use BX Offset value for added array
DS Location segment of "A" array
ES Location segment of “B" array
SS Location segment of result array
BP Offset value for result array
Symbol Table Stara: Constant offset of "A" array
Stard: Constant offset of "B" array
Starr: Initial offset of result array
‘ Count: Number of elements to be added
Seg D: Segment where "A" array is located
Seg E: Segment where "B"” array is located
Seg S: Segment where result is to be located
‘ Command Bytes Cycles Comment
MOV BX, #0 3 4 Initialize registers
MOV AX, #Seg S 3 4 Initialize registers
' MOV SS, AX 2 2 Initialize registers
MOV BP, #Starr 3 4 Initialize registers
MOV CX, #Count 3 4 Initialize registers
MOV AX, #Seg D 3 4 Initialize registers
MOV DS, AX 2 2 Initialize registers
MOV AX, #Seg E 3 4 Initialize registers
MOV ES, AX 2 2 Initialize registers
Loop MOV AX, Stara (BX) 4 18 Move first word to
accumulator
ADD AX, ES: Stard (BX) 4 20 Add second result to
! accumulator
MOV (BP), AX 3 13 Move result to storage array
: ADD BP, #2 4 4 Update address pointer
ADD BX, #2 4 4 Update address pointer
LOOP NZ Loop 2 19/6 Loop to add if CX = 0
Total bytes: 45
Total cycles: 36 + 78n i

! where n is the number of array elements

Loop

8086 Array Multiplication

This routine multiplies two arrays of equal arbitrary length, composed
of 16 bit words, located anywhere in memory. The 32 bit result is then
stored at any desired location in memory.

Register Use BX Offset of operands
BP Offset of product
DS Segment where multiplicand is located
ES Segment where multiplier is located
SS Segment where product array is to be stored
CX Number of elements to be multiplied

Symbol Table Star Constant offset of multiplicand array

A
Star B: Constant offset of multiplier array
Star C: 1Initial offset address of product array
Seg S: Segment where result array is to be stored
Seg D: Segment where multiplicand array is stored
Seg E Segment where multiplier array is stored
Count Number of elements to be multiplied
Command Bytes Cycles Comment
MOV BX, #0 3 4 Set multiplier element offset
MOV BP, #Star C 3 4 Result offset initialized
MOV AX, #Seg D 3 4 Multiplicand segment to
accumulator
MOV DS, AX 2 2 Multiplicand segment
initialized
MOV AX #Seg E 3 4 Multiplier segment to
accumulator
MOV ES, AX 2 2 Multiplier segment
initialized
MOV AX, #Seg S 3 A Result segment to i
accumulator :
MOV SS, AX 2 2 Result segment initialized
MOV CX, #Count 3 4 Element ccunt initialized
MOV AX, ES: Star A (BX) 5 19 Multiplicand to accumulator
IMUL Star B (BX) 4 149 Multiplication done
MOV Star C (BP), AX 3 14 Store high element
ADD BP, #2 4 3 Increment result pointer
MOV Star C (BP), AX 3 14 Stored on element
ADD Bp, #2 4 3 Increment result pointer
ADD BX, #2 4 3 Increment nperand pointer
LOOF N, Loop : 1/6 Laop unt il 7Y = o
Total bytes: 51
Total cycles: 3p + 23tn

Srere 1 i the numher b ey

!
|
|

4.

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12,
13.
14.
15.
16,
17.
18.
19,
20.
21.
22.
23.
24,
25,
26,
27.

8086 Array Sort

This routine sorts an array of words located anywhere in memory into

descending order.

The resulting array is stored in any other location

in memory, while the source array is destroyed.

Oloop

Iloop

Cont

Out

Register Use BP Offset pointing to storage location of next

sorted word
CX 1Internal loop
DX External loop
DI Internal loop
SI Internal loop

counter
counter
address index 1
address index 2

ES Number of words to be sorted
DS Segment where unsorted array is stored
SS Segment where sorted array is to be stored

Symbol Table Count:

Seg D:
Star S:
Seg S:-
Star D:

Command

MOV
MOV
MOV
MOV
DEC
MoV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CMP
JLE
Mov
MOV
ADD

AX, #Seg S
S5, AX

AX, #Count

DX, AX

AX

ES, AX

AX, #Seg D

DX, AX

BP, #Star D

CX, ES

S1, #0

DI, #2

AX, Star S (SI)
AX, Star S (DI)
Cont

SI, DI

AX, Star S (DI)
DL, #2

Loop NZ Iloop

MOV
cMp

Star D, (BP)
DX, #0

J7Z out

MOV
ADD
DEC
JMp

Halt

Star S (SI), #n
BP #2

DX

Oloop

Number of words to be sorted
Unsorted array's segment

Unsorted array's offset

Sorted array's segment

Initial word's offset, sorted array

Bytes

(2 — W I W W WHENNDDETLwWWNDNWRN WD ~NWN W

Cycles

— —
NSNS

16/4
17

1¢/s
i

o/
{9

“

Comment

Sorted segment initialized
Sorted segment initialized
Count initialized

Count initialized

Count initialized

Count initialized

Unsorted segment initialized
Unsorted segment initialized
Sorted offset initialized
Internal count initialized
Loop index initialized

Loop index initialized

Load first word

Conpare to second

Jump if first is greater
Move element address

Move larger element
Increment index

Loop until all are compared
Move largest to sorted array
All elements sorted?

If so, done

Clear largest value
[ncrement storage pointer
Decrement outer counter
Begin sort again

Ty

Total bytes: 70
Worst case cycles: 91nZ - 20n + 41
Best case cycles: 84nZ - 13n + 41

where n is the number of array elements

Timing notes

a)

b)

c)

d)

e)

The compare loop (lines 10 - 19) is done (n-1)n times. Thus lines
10, 11, 12, 13, 14, 18 and 19 (taken) occur n(n-l) times per use of
the routine.

The storage of the largest element found in the unsorted array occurs
n times per routine use. Thus lines 19 (not taken), 20, 21, 22 (not
taken) 23, 24, 25 and 26 occur n times.

Lines 1 through 9 and 22 (taken) can be considered overhead, and occur
once per routine use.

In the best case situation, the routine is already in descending order.
Thus the jump on line 15 is taken n(n-1) times and lines 16 and 17 are
not used.

In the worst case situation, with the array to be sorted in ascending
order, the jump on line 15 is never taken, so lines 16, 17, and 15 (not
taken) are used n(n-1) times.

Best case = a+b+c+d
= 68(n)(n~-1) + 71n + 41 + 16(n){n-1)
= 84nZ - 13n + 41

Worst case = a +b+c +e

68(n)(n-1) + 71n + 41 + 23(n)(n-1)

91n2 - 20n + 41

5. 8086 Interrupt Service

This routine services an interrupt sorting 8 word lergth registers
and restoring them before returning to the main routine. The
latency time is that of the IDIV instruction, which is comparable
to the Z8001 word length division

Action Cycles Comment

Latency 184 ID1v

Interrupt Processing 61 Given by manufacturer
Store 8 word registers 88

Restore 8 word registers 64

Return from interrupt 24

Total cycles = 421
Calculated time = .08 msec

Expected run time (+5%)= .09 msec

T~y

APPENDIX C

ARITHMET IC MIX COMPOSIT ION

This mix is intended to test the relative arithmetic efficiency of micro-
processors. It is based on the mix "N", fire control simulation mix, but
lacks the floating point and transcendental operations of that mix, as these
operations are not hardware supported by either processor. The 23.27 of

the total instruction mix which was excluded has been proportionally divided
among the remaining categories of instructions. The input/output operations
were specifically increased in importance, however, to test the specific

I/0 commands available to the processors

Addressing modes are also tested beyond mix "N'" specifications, as set out
in the table below. The base address category will, however, not only
include base address modes, but other addressing modes not included under
the direct address, indexed, or indirect register modes. These modes are
listed under the specific operation,

All operations are assumed to be on 16 bit, binary numbers, unless otherwise
mentioned. Signed numbers are also assumed.

Mix "N'" less

floating point Microprocessor Mix

Operation operations used for benchmark
1) Data Transfers 46 59.1
2) Arithmetic

Addition 3 3.95

Subtraction 3 3.95

Multiplication .15 .2

Division .05 .1
3) shift/Rotate 1.5 1.95
4) Compare .7 .95
5) Branches

Unconditional 3.1 4.0

Conditional, taken 3.1 4.0

Conditional, not taken 3.8 4.95

Loop control, taken 3.8 4.95

Loop control, not taken 1.5 1.95
6) Index Register QOperations 5.5 7.21
7) Logical 1.5 1.95
8) Input/Qutput .1 .79

Totals 76.8% 1007
c-1

{
{ Addressing Modes

50%
25%
15%
107%

of addressing
of addressing
of addressing
of addressing

is

in direct mode

in the indirect mode
in the indexed mode
in the base mode

APPENDIX D

Z8001 ARITHMETIC MIX RESULTS
3 1. Data transfers 5910 operations
F
Cycles Totals
a) 2955 register to memory
1) 1478 direct address {
739 short offset 12 8, 869
739 long offsct 14 10, 346
2) 739 indirect register 8 5, 904
{ 3) 443 indexed address
= 222 short offset 12 2,264
‘ 221 long offset 15 3,315
‘ 4) 295 based (BX, BA, RA) 14 4,130
' b) 2955 memory to register
1) 1478 direct address
739 short offset 10 7,390
i 739 long offset 12 8,868
‘ 2) 739 indirect address 7 5,173
‘ 3) 443 indexed address
222 short offset 10 2,220
221 long offset i3 2,873
4) 295 based
199 BA, BX, or RA 14 2,756
96 immediate 7 672
Total cycles required: 64,780
.
! 2. Arithmetic 820 operations
a) Addition 395 operations
1) 198 direct address
99 short offset 10 990
99 long offset 12 1,188
3 2) 99 indirect register 7 693
' 3) 59 indexed
30 short offset 10 300
! 29 long offset 13 377
. 4) 39 based !
{ 20 register 4 80
19 immediate 7 133

‘ 2. Arithmetic (cont'd.)

Cycles Totals
b) Subtraction 395 operations
1) 198 direct address
99 short offset 10 990
99 long offset 12 1, 188
2) 99 indirect register 7 693 1
3) 59 indexed
30 short offset 10 300
29 long offset 13 377
i 4) 39 based
20 register 4 80
19 immediate 7 133
b c) Multiplication 20 operations
3 1) 10 direct address
, 5 short offset 72 360
5 long offset 74 370
2) 5 indirect register 70 350
3) 3 indexed
2 short offset 72 144
1 long offset 75 75
4) 2 based (immediate or register) 70 140
d) Division 10 operations
1) 5 direct address
4 3 short offset 97 291
- 2 long offset 99 198
2) 2 indirect register 95 190
3) 2 indexed address
E 1 short offset 97 97
;| 1 long offset 100 100
’ 4) 1 based (imnediate or register) 95 95

Total cycles required: 9932
Y 3. Shift/rotate 195 operations

; a) Rotate 98 operations

49 rotate right/left 1 pla~ 6 294
; 49 rotate right/left 2 places 7 343 i
3 b) shift 97 operations
! 49 shift right/left 1 place 18 882
‘ 48 shift right/left 8 places 39 1, 872
- Total cycles required: 3191

D-2

e @

Compare 95 operations
Cycles

a) 43 direct address

22 short offset 10

21 long offset 12
b) 24 indirect register 7
c¢) 17 indexed

9 short offset 10

8 long offset 13
d) 11 based

6 immediate 7

5 register 4

Branch instructions

Total cycles required: 896

a) Branch instructions 1295 operations

1) 648 direct address
324 short offset 8
324 long offset 10
2) 324 indirect register
216 unconditional or taken 15
108 not taken 10
3) 194 indexed address
97 short offset 8
97 long offset 11
4) 129 base addressed (RA) 6
b) Loop control 690 operations 11

Index register operations

Total cycles required: 20,359

721 operations

1) 361 direct address

181 short offset 13
180 long offset 15

2) 1Indirect register mode not available
for this instruction
3) 180 indexed address

90 short offset 13
90 long offset 16

4) 180 base address (BX, BA, RA)

48 no timing differences 15

Total cycles required: 10363

1985 total operations

Totals

223
252
168

90
104

42
20

2,592
3,240

3,240
1,080

776
1,067
774
7,590

2353
637
735

2700

1170
325
1440

2700

7. Logical operations 195 operations

Cycles Totals
a) AND 65 operatiomns
1) 33 direct address
17 short offset 10 170
16 long offset 12 192
2) 16 indirect register 7 112
3) 10 indexed
5 short offset 10 50
5 long offset 13 65
| 4) 6 based addressed
3 immediate 7 21
3 register 4 12
b) Complement 65 operations
1) 33 direct address
17 short offset 16 272
16 long offset 18 288
2) 16 indirect register 12 192
3) 10 indexed register
| 5 short offset 16 80
- 5 long offset 19 95
' 4) 6 based address
6 register 5 30
c) OR 65 operations
1) 33 direct address
17 short offset 10 170
16 long offset 12 192
2) 16 indirect address 7 112
y 3) 10 indexed address
2 5 short offset 10 50
5 long offset 13 65
4) 6 based
| 3 immediate 7 21
] 3 register 4 12

Total cycles required: 2201
8. Input/Output operations 79
40 input/output, direct address 12 480
39 input/output, indirect address 10 390

Total cycles required: 870

Cycles required for entire mix: 1i2,592

Time required to "execute'" mix: 28.2 msec

D-4

|
&
4
i

e d e

8086 ARITHMETIC MIX RESULTS

APPENDIX E

The following address modes are used in both arithmetic and word processing

mix evaluations:
Mix Mode

Direct Address

Indirect Register
Address
Indexed Address

Base Indexed Address

Base Address

8086 Address Mode

Direct 16 bit offset added to D.S. This takes 6
clock cycles to compute,

Indirect, through the surm of a base or index
register added to D.S. The calculation requires
five clock cycles.

Indirect, through the sum of a base register and an
index register added to D.S. Computation of the
address requires 8 clock cycles.

The same as indexed, but with a constant offset
added. This address requires 12 clock cycles to
compute.

Indirect, through the sum of a base or index reg-
ister, a displacement constant, and D.S. This
address requires 9 clock cycles to compute.

1. Data transfer operations 5910 operations
Cycles Total
a. 2955 Register to Memory

1) 1478 pirect address 15 22,170
2) 739 Indirect register 14 10,346
3) 443 Indexed 17 7,531

4) 295 Based
148 Based 18 2,664
147 Base Indexed 21 3,087

E-1

DA ks s 4

= c————

s kP o e

1. Data transfer operations (cont'd) 5910 operations

Cycles Total
b. 2955 Memory to register

1) L478 Direct address 14 20,692
2) 739 Indirect address 13 9,607
3) 443 Indexed 16 7,088

4) 295 pased
99 Immediate 4 39
93 Base 17 1,666
! 98 Base indexed 20 1,960

Total cycles required: 87,207
2. Arithmetic 820 operations

1. audition 395 operations

1) 198 pirect address 15 2,970
2) 99 Indirect address 14 1,386
! 3) 59 Indexed 17 1,003
. 4) 39 Based
10 Register 3 30
10 Immediate 4 40
10 Base 18 180
9 3ase Indexed 21 189
b. Subtraction 395 operations
1) 198 Direct address 15 2,970
2) 99 Indirect address 14 1,386
! 3) 59 Indexed 17 1,003
; 4) 39 Based
, 10 Register 3 30
' 10 Immediate 4 40
10 Base 18 180
L, 9 Base Index 21 189
c. Multiplication 20 operations
1) 2 Direct address 150 1,500
2) 5 Indirect address 149 745
3) 3 Indexed address 152 456
4) 2 Based
; 1 Base 153 153
1 Index base 156 156

—

Arithmetic (cont'd.)

Cycles
d. Division 10 operations (16 bit signed)
1) 5 Direct address 183
2) 2 Indirect register 182
3) 2 Indexed 185
4) 1 Base addressed 186
Total cycles required: 16,441
Shift/Rotate 195 operations
a. Rotate 98 operatiomns
1) 49 Rotate Right/left 1 bit 2
2) 49 Rotate Right/left 2 bits 16
b. shift 97 operations
1) 49 shift Right/left 1 bit 2
2) 48 shift Right/left 8 bits 40
Total cycles required: 2,900
Compare 95 operations
a. 43 Direct address 15
b. 24 Indirect address 14
c. 17 Indexed 17
d. 11 Based
Register 3 3
Immediate 3 4
Based 3 18
Base indexed 2 21

Total cycles required:

1387

Total

915
364
370
186

98
784

98
1,920

645
336

289

12
54
42

5.

Branch Instructions

a. 1295 Bra

1) 648

2) 324
3) 1%

nch instructions

Direct address

324 conditional taken

324 conditional not taken
Indirect register (JP)
Indexed (JP)

4) 129 Rased

b. Loop con

Loop,
Loop,
Loops
Loops

Inter segment based (33)

Cxcles

1985 total operations

16

4
11
26

33

Inter segment base indexed (32) 36

Intra segment based (32)

24

Intra segment base indéxed (2) 27

trol instructions

taken (172)
not taken (173)
taken (172)
not taken (173)

690 operations

17
5
19
5

Total cycles required:

Index Register Operations

26,883

721 operations (LEA)

a. 361 pDire

ct address

b. 180 Indirect address
c. 108 1Indexed
d. 72 Base

36 Base

36 Based indexed

Total cycles required:

E-4

8
7

10

11
14

6128

Total

5,184
1,29 |
3,564
5,044

1,089
1,152
768
864

2,924
865
3,268
865

2888
1260

1080

396
504

miiisliieben

" 7. Logical operations 195 operations
Cycles Total
a) AND 65 operations

1) 33 direct address 15 495

2) 16 indirect register 14 224

3) 10 indexed 17 170
4) 6 based j

register 2 3 6

immediate 2 4 8

based 1 18 18

base indexed 1 21 21

|

b) Complement 65 operations !
1) 33 direct address 22 726 i
2) 16 indirect register 21 336 :
3) 10 indexed 24 240 :
4) 6 based :

register 2 3 6
base indexed 2 28 56 i
based 2 25 50 i
; c) OR 65 operations j
1) 33 direct access 15 495 i
2) 16 indirect register 14 224 !
3) 10 indexed 17 170 !

4) 6 based

register 2 3 6

immediate 2 4 8

based 1 18 18

base indexed 1 21 21

Total cycles required: 3,298

PP S

8. Input/Output 79 operations
b 40 Input/Qutput fixed port 10 490
: 39 Input/Output variable port 8 312

Total cycles required: 712

1 Total cycles calculated to be required: 144,591

Calculated time required at 5 MHz: 29.0 msec i
Expected '"run' time (5% variance): 30.0 msec
1
E=5

ShiDal. > 3>

LR

Nl N omig

r__-'_'_———-__'_'

b ke e i i

!

APPENDIX F

CRT TERMINAL CONTROLLER MIX DEFINITION

This section details assumptions made about the specific task and assump-
tions made about the system architecture from which the CRT Terminal Control-
ler mix was extracted,

Task Definition

The task is based on a microprocessor controlled, stand alone terminal of the
"electronic typewriter'" type. All operations are concerned exclusively with
the input, modification, or output of ASCII characters,

The task itself consists of the input, storage and display of 3 pages of 48
lines with 80 characters per line. Operator errors are assumed to occur at
a rate of 5 errors per 80 characters written. Two of these require the
deletion of a character, two require the insertion of a character, and one
the changing of a character. After the entire three pages have been written,
line 23 of the second page will be deleted and a new one inserted in its

place. The text is scrolled from top to bottom once aund then output to the
printer.

Although the microprocessor could be performing other tasks at the same

time, only the instructions necessary to accomplish the above operations

have been included in the benchmark. Furthermore, ideal system response has
been assumed, since this is to be a comparison of microprocessor efficiencies
rather than hypothetical system design. Some of the terminology of the
basic CRT based machine is included in the flow charting, because it is
descriptive and easy to use. It does not affect the mix.

System Assumptions

The system, shown in Figure F-1, consists of two major components, the con-
trol unit and the display unit.

The control unit contains :he microprocessor and its supporting circuits,

the system memory, aund the keyboard and printer buffers. Some type of inter-
rupt masking capability is assumed, either on the microprocessor or as a
supporting peripheral, The system memory is accessible to the microprocessor
at all times.

The display unit contains a video timer and controller (VTAC), a 4K X 8

(48 line) display buffer memory, an offset latch for display memory address-
ing, supporting circuits for the VTAC, and address decoding logic. The VTAC
references the display memory for the display updates, allowing the micro-
processor access to \~. display memory during vertical blanking intervals,

Wwauodwo) Arpdsty

s82.ppY
FESEL T 153

r ul

WWIEVIA A0071d WIISAS

Alowaw
123 ua—ﬂ
oapA

Iqeul
[RIER

1-4

NNO14

uauoduwo) wIIEAS

pavoqaa —

_ 1330114 1;—

2IPPY 117 3w 91 8
azr 91 1043005
- 1dn2asaulssagyng
0N <>
133083WY) 123138 s
1=Z _
Py
TITOY
Y
3} |)
B N 9 m /ﬁ
] X N—— T
— Q1] wavs
. N
IR FESEL 2] Vil
r _ 91 add
A0y woae [ugﬂdl
328330 — o
1013u00
shg vIea
puy T
caetn $nd Sea1ppy
09p14 |
314qeuly
TIeT _
K Lo23ua)
Juis 58233 %
02p1A A1owap 4 —
133308

Kioumm
w2sks

F=-2

It should be noted that the cursor address and microprocessor video memory
address registers do not necessarily point to the actual memory row address.
The offset latch must be added to them to generate the actual row address.
This latch is accessible under the same conditions as the video unit memory.

Register Usage

Due to the limited nature of the task, the registers used are maintained
intact throughout the overall routine. Five registers are dedicated to the
storage or manipulation of data as defined below,

Register Function
| "AY System memory address register
"'B" Video memory address }
"C" high byte offset latch value E
"c" low byte Page or half page boundary for system's |
displayed row @
; "E" Multiple use (scratch pad) register
g Multiple use (scratch pad) register
"3" high byte Maximum segment and Row used (system memory)
"3" low byte Multiple use (scratch pad) register :

Address Word Definition

The address bus, which is assumed to be 16 bits, is partitioned as below.
high byte low byte

A

<$ LSB

N

3
N

Row Address NY Character Address

: Display Memory bit: Set to allow access,
’ with segment bits equal zero and video

‘ interrupt set, to allow access to the

display buffer memory.

i Segment bits: In conjunction with bit 7, these bits allow
access to 4 system pages of 48 lines plus the 48 lines of
display memory.

_ 4

Access to the video buffer memory requires that both the segment bits and
display memory bit be set to zero.

With the display memory bit set to one' , the segment bits allow access to
four pages of system memory. Data is stored in an x-y addressable block to
reduce the time required for system memory to video buffer memory data
traunsfers, 1

Flow Chart Language Notes

To decrease the effects of bias and experience on the benchmarking process,
the flow charts for the required processor routines are written in a hybrid
| language. Notes on this languageé are given below.

f | Addressing Mode Chart Symbolic Definition
-
L | Indirect Register @ "x» Register contains address of operand
| Register X" Register holds operand
Immediate None Operand is part of, or immediately

follows instruction

General

a) Instruction format is
Instruction source, destination
b) Instructions such as set/clear bit are given in English for clarity,
although they are translated to assembly language for mix instruction
set extraction.

¢) Hexidecimal numbers are used exclusively in the flow charts.

Flow Charts and Descriptions

The following pages contain flow charts and descriptions of the various
routines that are used,

Character Write Routine

This routine separates keyboard inputs into two separate groups. Coatrol
inputs are then directed to the appropriate subroutines, while character
inputs are stored in both the display buffer and system memory. The final
section of the routine updates the address pointers and returns control to
the "wait" loop.

Section A performs general housekeeping and insures that no further keyboard
interrupts will be honored until the initial interrupt has been serviced.

An interrupt from the video uait is allowed and the routine loops until
access to the video buffer memory is allowed.

Section B separates allowed control functions from character inputs.
Section C stores the character.

Section D updates (increments) the cursor character position, the simplest
case of updating this address.

Section E is reached when the cursor points to the final character address
of a row. The row is incremented (if possible), the cursor and memory
pointers are set to the first character of the new row, and control is re-
turned to the "wait' loop.

Section F resolves the case where the maximum number of rows addressable by
the VTAC has been reached, but the offset buffer is not filled to capacity.
The buffer is incremented, the pointer set to zero, and the program returns
to the "wait" loop.

Section G is a parameter initialization segment, since this portion of the
routine is needed only when both the number of rows and the offset buffer
are at maximum capacity., This implies the need to update the entire video
buffer and, with the registers set to the required values, the display
update routine is called to perform this task.

-
. Rout ine
call
Section A
!
b
—
)
Section B
W
) b
~
1
!
iewtion

FIGURE F=-2A

qune— ,

Set Kevboard interrupt mask]

sk

Read Keyboard huffer to "F" |

Clear Xevboard buffer J

Sk

Clear video Intecrupt Mask

e Insert
vat1ne

>

Lafe Deiete
Kuatine

frant
hout 1ne

‘haracter
Insert
Rout ine

“hara.ter
Delete
Reut ine a

Te
cursoer

movement
rout 1nes

\L !VJV <

, Move ', 1 VAM l
I Move F, 1 TR

To

Latry

A

CHARACTER WRITE ROUTINE

Section
i

Section
E

FIGURE F-2B

(¥

W;_i

Increment “A'

I

Increment VB

I

vharacter repister

Move low bvte “A' to .ursod

I

Clear key board interrupt
magk

I

Set video interrupt mask]

F-

& Return to

In.rement Row "A"

Ilncrement sggment A"

—

Clear Row "™

Clear low byvte "A"

.

Move high byte “A” to high
byte ;"

—_—

Move @ to cursor character
adder register

—

Clear low bvte "B"

k4

Entry
[

F-7

CHARACTER WRITE ROUTINE, CONT'D

¥ calling
rout ine

Futy.

A Section E J'

Increment Row 8"

Move high bvte "8 to
vursor Row Address Register

vlear Keyboard
Interrupt Mask

‘ NS

: Set Video [nterrupt
Mask
Returt to ailin,

L I IR

2

o

tarrement high byte
‘ Sestion ¢ I

! Y Tateh high byte o7 to
ottset latch

Clear kevboard interrupt
mask

e

l Set video interrupt mask
Return te .alling

X o routine
. 7

—= |

I Move 1 to high byte

Section ¢ J

fn.rement segment Ui

: No
M

! l set " row (low byte) Sk
i1l set ror "o (low byte) = @

L ’l’ Y
To .ommor dtsplav
up date routine

' FIGURE F-2C CHARACTER WRITE ROUTINE, CONCLUDED

Character Deletion . Routine
This routine deletes the character pointed to by the cursor. Video buffer
memory is updated first, followed by the system memory, and the final char-
acter of the line which will be left blank.

Section A is used when the character to be deleted is the final character
of a line.

Section B modifies the video buffer memory.

Section C modifies the system memory and returns control to the calling
| routine.

, [

Routine call

Y

section A

Move § X J
Clear keybosrd interrupt
mask

Return to

calling (\L

I Move "B to “FV ;
I

Move “B' to “E"

M

Increment “EM i

FURDINIIPY S —

([rout ine

g

Section B

Increment “E™ '

L2

Move @, W F"

e

Move “AY to "R

L————’to Entrs A

S - I

L1

B FIGURE F~3A CHARACTER DELETION ROUT INE

N

l Move “A" to "F"

Increment "E"

y 1

———

Move @ “E", @ “F"

Section A

Increment “A*]

—k

Increment ''g"
—— 1

I Move ¢, 3 “E"
!

: Y

. Clear keyhoard
interrupt mask

Return to
calling
-

routine

FIGURE F-3B CHARACTER DELET ION ROUTINE, CONCLUDED

AD=A10% 170 GENERAL ELECTRIC CO PITTSFIELD MA ORDNANCE SYSTEMS F/O 9/2
EI.ICTIICAL CHARACTERIZATION OF ADVANCED MICROPROCESSORS.
JUN 81 W HAJOUK: T M TROISK!! B NEWTON F!DW!-OO-C-DO.!
UNCLASSIFIED RADC=TR~81-126

Character Insertion Routine

This routine inserts a blank character at the current cursor address. The
final character of the line is last.

Section A allows for the insertion of the final character of a line.
4 Section B modifies the video buffer memory. i

Section C modifies the system memory and returns control to the calling
routine,

Sewtion A

Section 8

r
Rout e

N

Retutn to ,

vatt
7

Move @, u “A"

sk

—

Clear kevboard tnlcrrupt—l 7

~ routine

L calling €

Move CF, low bvte +”

—¥

Move " to “E"

b

—

Move i to low byte [l

To Tntr.

l Decrement

%

FIGURE F=-4A

CHARACTER INSERTION ROUT INE

F=-13

(A)

;
4
i
[}

Move § Lto

I

Move Bt to lo« byte E

R

I

WV!:‘E to b

(-1

| Move Bi to low hite t I

hecrement F \V

————— e

Decrement E-

Clear keyboard
intercupt mask

FIGURE F-4B

¢

Return to
calling routine

CHARACTER INSERTION ROUTINE, CONCLUDED

Line Deletion Routine
This routine deletes a line from the system memory and decrements the maxi-
mum row count automatically. The video buffer memory is then updated using
the display update routine.
Section A initializes the scratch pad registers.

Section B moves the characters,

Section C performs the update of pointers and sets the registers for the
display update routine.

F-15

Section A

Section B

-

Routine

call L

Move A" to “E”

ke

Move “E' to “F"

4
Increment row "F'" w
¥ —E
Clear row "f*
Increment segment P
2 4
r 4 <
Clear low byte "E
Clear low byte “F"
s -——-%-j
3 P
Move @ F, @"g”
r

< Entey
\ F.a B

Increment 'E™ J

—

I Incremeny “F"

FIGURE F-5A

LINE DELETION ROUTINE

=5
P To Entry A

i
|

Section C

Entry o

\) ”

To Entry &
~

Y N

igl
byte “F"

Increment row “F"

—Y

Clear row “F™ J

Increment segment “F"

No

Increment row “E“ I

¥

g

FIGURE F-5B

—

N —

Clear row "E"

N2

Increment segment “E"

Move high byte "E“ to
high bvte "¢"

To common display

—ﬁ update routine

LINE DELETION ROUTINE, CONCLUDED

F=17

Line Insertion Routine

This routine inserts a blank row at the cursor row address, automati-
cally incrementing the system's maximum address count and using the common
display update routine to modify the video buffer,

Section A initializes the routine's registers, updating the system maximum
address with step 8.

Section B moves the characters in system memory and increments the pointers
across the row.

Section C is a row decrement routine, decrementing the row address pointers
back to the desired row.

Section D inserts the blanks into the addressed row and sets the parameters
required for the use of the display update routine,

F-18

. |

— e
]

Rout snv AN

call P

a

[Clear “E” l

Move trigh byte “C" to I

3

frigh bvte "E”

I Move E to “F™]

3

Section A

Increment row "FY]

|

E

- —

| —
3

' set row "F' s @

¥

[Increment segment b]
| i

‘ Move hiuh byvte “F to

high bvte "G"

"

{inrtrv 8
Y

Section 8

) To Entry (A)

Increment “E"

*

Increment °''F*

S A

3 FIGURE F-6A LINE INSERTION ROUTINE

F-19

TG L L O ST e

[- Entes (A)

To tatr. (C)

Desrement row £

-
‘ section ¢

hecrement sexment "E']

set raw "E" = 2F |

! Decrement row “F" <

11

Decrement segment “F"

Set row “F" = 2F

A

Clesr low
byre “E”

Clear low
byte "F"

N
L 7

1

1

Teo Entry ()

FOWOR U

FIGURE F-6B LINE INSERTION ROUTINE, CONT'D

| -

Entry € \,_
Set low byte "A" = ¢ l
h
L4
Hove §, @A’
Section D
‘ Iincrement “A"
| Clear low byte “A"
F Set low byte "B" = 80 J
¥ove P to cursor character
addregs register
i ’p N\ call
i / comnon
i L. displsy
update
routine

TR 3L

| FIGURE F-6C

LINE INSERTION ROUTINE, CONCLUDED

F=21

o
Left or Up Cursor Movement Routine

This routine allows for cursor movement to the left or upward (toward the
initial line of the system memory) as indicated by the specific keyboard
command. A cursor left command at the first character of a row will leave
the cursor positioned at the last character of the row above. Automatic
scrolling is allowed using this pair of commands, as the video buffer

memory is updated by the display update routine,

Section A deals with the simple left movement of the cursor within a line.

| Section B is an auto decrement section, its apparent complexity being the
{ result of the x - y addressing desirable when using a VTAC. This section

assumes no video buffer updating is required.

Section C assumes a video update is required, and decrements and initializes
the registers required to use that routine. ;

F~22

Ses tion

section A

H

-

IR

¢

truo charsiter
write routine

Return to

FIGURE F-7A

valling routine

—

vlear "rv l

Jecrement TAY

e

De.rement MB7

&

Move low byte "A" to wursor
vharacter address reglster

clear keyboard
1ntercrupt mask

Set MBS biie l

e——J 4
L - A 4
I Lrom

character wfite routine

]
No
High
byte "
No -
[
yes
A 4
Ttigh
h)'te_"k" ves N
= (4
No

Decrement row RY

Latch mah byte

te curso
row address repister

—

L—_ﬁ

| Decrement hagh hote 'gv

2

Latch high byte "0 to
olfset latch

1

N

Te Eacr.

_——) To Entr. A

LEFT OR UP CURSOR MOVEMENT ROUTINE

4

bates 6

—
| ve.rement sexment “AT

N2

Set Row "A" o+ 2 4

— 1
N —

‘ !
\ i Il)euremnz row A" I

v

Sv.tien B

[r Set low bite "A” + @
4' Y

§ Set low byte “i" = BU J
| — —
Y I Set low byte "w' 2 of I

¥

set low bvte "g" = CF

Move low bvte “A" to cursor
character address register

>

Clear kevboard interrupt

mask
l’

Return to
calling
routine

FIGURE F-7B LEFT OR UP CURSOR MOVEMENT ROUTINE, CONT'D

gatsy O\
/

| Set low byte "C" = 0

L S

Decrement segment lov
“v byte “c"

Set row, low byte "C* = 18 I

'
' set low byte “A" =@ ‘

'
!
Section C set low byre "B = 80]
I \1'

set low byre "A" = & F I

o

A 4 Set low byte "B" = CF

3

L N
Move lov byte “A" to cursor
charscter address regiscer

set high byte “C" = ¢

S~

set high byte "B" = 17

R

Latch "C" high bvte to
offsec latch

+ To common
displav update
rout ine

FIGURE F-7C LEFT OR UP CURSOR MOVEMENT ROUTINE, CONCLUDED

Right or Down Cursor Movement Routine

This routine moves the cursor to the right or downward (toward the final
line of the system memory) on specific keyboard requests. Movement of the
cursor beyond the last character of a row results in its being positioned
at the first character of the next row. This routine allows automatic
scrolling through the system memory, but will not allow movement of the
cursor below the final printed line.

Section A provides the simple case of cursor movement within a line.

Section B determines if a display memory update will be necessary. If not,
it adjusts the cursor position and returns control to the calling routine.

If a display update will be required, the routine proceeds to Section C,
which sets the parameter registers and transfers control to the display

update routine,

Section &

\o

.

From natacetur

Frite routine

lacrement

i)

In. rement

i X

Latih low byvte "A" to curso
~haracter address repnister

——

Clear xevboard intercupt
mask

FIGURE F-8A

Keturn
*) to
¥ calling
routine
o [Ny
7/
r frum _ltaracter
~fite fouting
{low byvre)
To Entry
(AN
Increment Row "A"
¢lear Row
s
i 4
Increment segment “A™
To Fntr.
2 > "

RIGHT OR DOWN CURSOR MOVEMENT ROUT ING

F=27

Enty (BINL
‘ 7 —c
P_ Clear low byte “A™

—

write 9 to vursor .hasacter
adiress register

B
figh byte

9]

Section §

Incremant Sme "RV Increment high byvte

i 2 —

latch high byte 8" to curso Latch high byte "= ge
address recaister vifset laten

L - . |

T

Set low byte "4 = 80

L 2

Clear keyboard interrupt
i

Retura to

ralliog
Rout tne (
.
-
—3
Fatrs A &
i
In: tement segment low byte
set low byte ' = §
o [set "rvorow (low bvee) = L7
aevtion ¢ I
Set low bvte "B = HO

1

< lear mivh byte "]

Set low byte "A" s @

Move @ o cursor chara.ter
adiress rewister

¢

3

FIGURE F-8B RIGHT OR DOWN CURSOR MOVEMENT ROUTINE, CONCLUDED

F=-28

Display Update Routine

This routine updates the video buffer memory by transferring data from the
system memory, It cannot be called directly, but is automatically called by
many routines (for instance, the line insertion/deletion routine).

No changes are made to the system memory by this routine.

Section A initializes the scratch pad registers used by the routine and sets
the offset latch to zero.

Section B moves the data.

Section C increments the address pointers through both system and the video
buffer memory, the latter, by the latching of offsets to the video buffer

latch. On completion, interrupt masks are cleared and control returned to i
the calling routine.

F=29

SN Y SPRO

Section A

seitic: B

Section ©

-

ﬁ“

Routine N

call P came

Entry B e

K

cleas “E® i

2

Move lo< bvte "C' to hagb
byte "E" <2)

Clear [¢}]

| Clear low bute ‘Gv ()
Lat.h low byte “G" to (5)
offset latch

i 7k

i

>

FIGURE F-%9A

r lear los bvte “E™] &)
Ser low kyte “F" = 30 I [eh]

move 1 [Ch]
Yes (%9

No
Increment "B (10}
Tncrement “F” (11

‘) To Entry
4

— 'F

Clear row “E")
InoToment segment “EM] asy

K ‘28

COMMON DISPLAY UPDATE ROUTINE

F~30

A

section

Entry () N
7

y4
To Satry B
N

FIGURE F-9B

wge

Tncrement low byte "G 44]

e

Latch low byte “G" to
offsec latch

—_—

—

lLatch high byte "C" to
offset latch

Clear keyboard interrupt

X

(t6)

an

(18)

as)

20y

@

22)

___q Return to

COMMON DISPIAY UPDATE ROUTINE, CONCLUDED

F-31

& cslliag
routine

' Print Routine

This routine outputs the entire written system memory to the system's

printing device. Neither system memory nor video buffer memory is modified
by this routine.

Section A inhibits the video interrupt, allowing the output of data to run

to completion, and outputs an entire line of characters before continuing to
Section B.)

Section B increments the row pointer through the system memory until the
last written line is reached. At that point, interrupt masks are removed
and control returned to the calling routine.

B i

T TR

Sectron

Rt ane
call

FIGURE F-10A PRINT ROUTINE

£

I

set video
INTerrupt masi

veinter
Ready

Move 1 E, to printer

o Entrs A

| Incremant Ros "0 J Y
Set Row "E" = ¢

.

| Increment sepment g I
N
L4

Set low hvte "E" = O

_¥

L
-

F=33

n. AU SO

AT

o —

!
!
i
i
5

Entr. A

D

Section ¥ Clesr Video
nterrupt Mask)

Clear Keyboard
Intercupt Mask

L

Return to
Calling Routine

FIGURE F-10B PRINT ROUTINE, CONCLUDED

F=34

a2y S P N

B S Pk ity

e

Final Mix Definition

The mix is determined by "running' the already defined task through the
outlines routines as required, The results of this process are shown in

Table F '10

Note that this definition is free from bias in favor of any specific pro-
cessor and is, due to the large number of instructions, insensitive to errors
made in tabulating program steps. It should be noted that the task and pro-
grams required cannot be derived from the mix definition. Thus, most probable
errors are compensated for and the pure statistical mix desired for bench-

marking has been derived.

F=35

{ TABLE F-1 WORD PROCESSING INSTRUCTION MIX DEFINITION

Command Address Mode
1. Clear register (word) N/A 742
2. clear register (byte) N/A 750
3. Set/Load byte Immediate 679
4. Set/Load word Immediate 144
5. Move byte, register to register N/A 167
b. Move word, register to register N/A 1,157
7. Move byte, memory to register Indirect Register 167,520
8. Move byte, register to memory Indirect Register 119,040
9, Move byte, register to memory (I/0 Direct address 11,999
{ 10. Read memory to register, byte (I/O) Direct address 12,384
11. Clear memory (I/0) Direct address 12,384
12, Move # to memory, byte I/0 Direct address 148
13, Move # to memory byte Direct address 34,753
14, Move # to memory byte Indirect Register 1,233
' 15. Increment register N/A 203,744
16. Increment byte register N/A 24 0445
17. Decrement register N/A 1,575
: 18. Add register Immediate 20 i
- 19. tlogical AND to register Immediate 25
D 20. Subtract, from register Immediate 4
21. Tlogical OR to register Tmmediate 7
22. (Clear/Set bit (1/0) Direct address 47,537
23. Conditional jump taken N/A 25,382
24, conditional jump, not taken N/A 133,280
25. Unconditional jump N/A 98,344
Total Commands 857,463
%
F=36

i
ji
-

APPENDIX G

28001 TEST PROGRAMS

This appendix contains the programs that were developed and used
during the characterization of the Z8001l. The following describes the
use of each program:

10

SHMO2 .EDT: 280, pages G-2 through G-10, is the test program
used to characterize the 28001, It uses a GO/NOGO functional
test with worst case input timing conditions. The outputs are
strobed at the vendor specified delays and pass/fail data is
recorded as temperature, Vec, frequency, duty cycle, and input
levels are varied.

28000. PIN: 280, pages Gll and G-12, is the Z8001 pin arrange-
ment program used with the test program.

LR N

WS~ .

1
1.
1.
1.
1.
1,
1,
1
1
1a
1
LI
1
1.
1
1.
1.
1
1
t.
1
t.
1,
1.
1.
1
1.
1.
1
1,
t,
1.
1.
1
1
1
1
1
1.
1.
t,
LI

3.
;o

JN1INN
200
LED T
nnon
n|san
nN&NN
n7Tnn
0ORND
L NONN
1000
1100
1200
o t30n
1400
<1500
1R0ON
1700
L1RNAN
L1ANN
2000
s iNN
2200

2300
)nnﬂ
259720
e PhNN
270N
2ann
29170
Innn
10N
3200
339N
s 3ann
L3890
. 3ANN
s 3700
1800
3oan
I XiEa]
Hrnn
npan

nyoon
nann

1_.n%a0

L AR AR AR AR A2 2 A B IR N B 2 T U N TN N TN JNE BN N R SN JNF RTINS NN SN S N

»

I E R R A FZR RN EZEEREANSEASS YR EERANRE AR AR AR R AR RS 2
TEXTRINTY STD270 TFST PROGRAM
CIRCUTTY TFST FNGYNFERING

RENFRAL FLFOTRIC ARNNMANCE SYSTEMS
PITISFTIFILD, MASSACHISFTTS

NPT PART NR DR SRNNY

AT YESCRTIPTTIOM t1ARTT MICROPRNLFSSIN
NATF 10 MY 1980
PRAGRAMFQ e

FNY SUPPARTTING NNCHMERTR,CANSIILT FTFC AND
OTHFY CARTNFT FTILFS HNDER THF FOLLNDwING
TRENTIFTEDN TFST SOFECTFICATINN NUMBEQ AND
ANAPTFS MUMHERS, AS «Fil AS LTSTINAS IF THF
FNALLNYING INFANTIFTFN NISK NP MANKNFETIC TAPF
FTLFS,

TFST SPFrIFTCATTIN: $NATA RANK
TEST TYPF/CNNDTTIINN sFUMCTINNRAL ,SHAND P NT
NRIFCT FILF tRANY

FDOIT FTIF TSHMND

PTM ASSTANMFNT FTLLF ¢7RNAODND

PATTFQY. ETLF £77900
THIS] LLTSTTI*G TS tTFRTESTY ENTT
SGCXKFT CARD *eH2NAD

[ZZ XX AREEASAZEZEZ R RS RS R X RRA R AL R AR AR AR EES 2R

PTLTST ASSTGUMFNTS
'EAXEEEXENEREEEE AL A ARSI RS R ZNEERE R Z A AN AR RS R RS RS 8

PIVLTIST PATAT = TADO,TANE, TANR2, 14N, 1404, 14N, TANA,TA

N/

G-2

T

T 900
R n8an
T NAAD
I . nran
3 _n18n
T,0R00

y nonn
310600
1,0100

,.1200
3,.130n0
23,1490
L ,.1859n0

R, 1600
T 1790
3.,180n
21,1990

n,ntan
a4, n2n0
Q.nlnn
da0nnn
n,N500
4 ,nANG
g4,n07n00
1,000
40900
4,100
n,11190
g_,129n
a,13nn
narand
nh, 1890

S, N100
SN0
R.Nian
SN0
S.N89n
S,NANY
S.0n70n
q.nunn
S, N20n0
S, 1090

TANK, YARQ, TANIN, TANI1,TADL2,TAD1Y,18N14,T7AD1§

PIVLTIST TNS = NATAT,STORP , MT VT ,NVLT,SEGT, N/
AURYN, AT T ,REQEY, FILX

BINLIST DATAD = NANN,DANT,NAND ,NANT,NANY,NANS,NADK,NA
N7/
NANRK,NANO0, NAIIN,OADYY ,NADLI2,NADI3,NANL4E,NADLS

PINMEUTST MITS = NATAN, 4N, MRFN,NSRT,ST0N,ST1,ST2,8T3,8NN
/

SN 'qkl).s’-". s‘~”" QRIQ,S’W-,, n“ﬂﬂ“.““. NS, ‘!w,DSd.DSIO. AS

PINMLTST AL = DATAT,DATAN,STOP ,MI,VI NVI,SERT/

MVMY ,RFSET ,HUSRN, VAT T ,CLK,MN,MRFN,NSRT,8TN,ST1,8T2,8TY
s SNN/

SKY1 ,SV2,8NL, 8491, SMS, SNA,RIISAK ,PRW,NS,RA,NS8¥,NSIN,AS

PTn TRT ASNSRT s AS,NSKRT
DINLIST ANSFG = NATAN,’ND,SN1,SN2,SNT,SNU, SNS, SNA

SURINGTINFS ANMP FUMETINNS

AR AT I PP R E A AR AN RRARARRAAN PR AR RARANRNAARREARAANARNRY
SURARNUTTINE HP YORS (V) ,HPWRCLIV, V) ,HRAQRV(V,V,V)1HP&120
FUAMCTTIOAN HKPRQLR(V)eHPAIDQ

SURRNNTTANF FVYSKSINY,NVSE(N) M

ENNCYINY TVvSS(N) ,,AVRK (V)M

SHRRANTINE SETFMPIV) ,WNTEMP(N) s TPUSNA

SUKRATINE FYSTINY,NVST(N)IMCY

FHMECTINMN MyYST(VI,TVST (D) IMEY

FUNCTION ATTEADINYeTHAGNA

AQRAY TEZP2(R)

ANAY 1.DQY(YY)

ARRAY HDRV(IL)

ARRAY FRFN2(Y3Y)

SIRPANTINE SAVTIST(NY2STATUS

NFVYICE SPFCTIFICATTION CPNSTANTS

PR R RO P A A AR AR RPN R NN R A RN ANARRRAN R AN NI RNACRAARARNND
VOCNNM = & ny

VECMAX = § 28y
VOEVTIN = a,78V
{CrvaxY = TNOMA
v PJ0y

vIL n, ey

vy PJMV

vy N Uy

—

.

S.1100 & VOO LNOP COMSTASTS
! §.1200 VMIN = 1,25V
S.13%00 veAX = §_ TSV
S.1400 VINC = 0,28V
§.1500 % FRENIENCY LNNP CONSTANTS -

nn

S.160N0 FMIn = {FA
3 55,1700 FMax = AFA
S, tRON FINF = 1FA
S,12900 = DUTY CYCIF LYIP CNMSTANTS
g,.2n%0 NVMIN = P
S5.2100 nvaAY = R
<,2200 NNe = Lt

§,2700 « FLAG INTYTALTIZATTION
S, 2RNAD TF]RY = 0

5,.29000 ARART =0
2 g 1nnn PRINTCIPOCR,CR,"WHTICH TEMBERATHRF DN YOt ATSH TN STAR
] T wilw?2"

& %310an PRINTC12>FR,"TYPF A | TN START WNTTW {125C,"
S.3%290 PRINTCI?DCR,"TYRF & 2 T START wllTwm 70C,"
S.3300 PRINTCI?>CR,"TYPE & 3 TN START wiTH 25C,"

g 2400 PRIMTCIPSIR,"TYPE A4 4 TN STARYT WTTWw AC,"
5.3500 PUTINTCI2DCR,"TYDF A & TN STARY wWTTH «S5SC,"
<,.2AND0 ACCERTCI2OCR,"FNTFR YNUR CHNICF ®,Tr7,C9

; s.31700 TECTTT FR 1VA 01,6, 06

A,.0100 * NG SFRIAL NIMAFR
I\.ﬂ?l‘ﬁ B Y2 2 2 2R 2222222222222 22 X2 X2 X X222 2R 2 RAZDZS R
6,.0300 ACCFPTCI2>CR,"FNTFR NEVICF SFRTAL NUMRBEQY, §N,CR
AJNAND LNGMARKFRCI>2N

A NS00 ILNAPARAMFTIRTICKCE , SYSN®3SN

A NDAROO CNNTINUF

Q,.NNNN & PANFR LNAD MADULFE TN NUT
QG NINN % RARFINRAA SRS ANRNEANRARSRANNRR
2,031N CALL AN NY

Q, ,nnno GOTNCTTTI9 0n8,0,07,9,09,9,191,9,113
9,_,0&n0 LNOP 1N, %A K2R, 1, =

O_NAND GNIN 10,0303

9,070n0 LaNe 10,38 Kzh,t,ad

9,0RA0 ANTN 16,0303

9,nann 1LONP 10,38 K2, ,w1

9,100 GRYTN 10,0307

o, 1100 LOND 10 38 K3, ,e
‘ Q_121n anrTn 10,0303

a,1%0n 1 ONP 10 38 x=2,1,=t

1A 0100 & TEMRFRATHRE £ANTRIND

G4

to_ndnn
tn, natn
tno, 0310
1n 0343
1A 0320
10,2330
10,0833
1h_nann
10,0800
1N _nhKON
1n_07T00
1o _NRNAND
10,0900
tn_1nnon
1n11an
10,1250
10,1300
tn_1unn
10,1500
1N 188N
16,1400
10,1700
1N _1R0N
10,1900
10,2010
10,210m
ta, 22an
10, 22580
1n, 2300
10,2900
10,2500
1N, PANN
10,2700
1n_ 280N
10, 2900
10,2910
10 2920
10,2230
10,2940
1h 298N
10,729%A/0
1N, 2970
19,2980
1nh_207n0
10,8000
10,3010
10_30on

-

R Y e R P R RSS2
TF(x FUr 2)10 3R

TF(x EN |)t10 38

1F(k Fiy 7¥10n, R

PRESFT TFMPP3eRG,elN,«1,28,0n,70,100,128
TFYP2TEMPD (X)

PRINT CR,"setravaattnrantstonn®
POTNT CR,"TFMOFRATIIRF2Z® , TFMP2 TN
PEINT (R, ecaenntantntddatrrntn® CR,CR
| NL7ARKFPRet >N

| NGPARAVETRICCY,S*TFVPRyK
SFTFMO(TEMR)

“ATT 8

TF(ATTEMR F) DY) 10,09

“ATT 1S

PNTIFVD(TwvP)

TF(ARS(TFVMPaT4R) LF F,0) 10,1R
PRIMTICIP>*TFAOFRATHRE HNSTARLF®,(CR
PRINTCIPO"TFST ARNRTEDN® ,CR,CW,CR
ANRT =1

onTNn 21,01

TFWP QNAK RDITIMF

HPwROK(1)

FVSS

HPWRCL(1,14)

HPHRRIV(Y) ,1,8V)

wadll 1§

COMNERT OADT 0N NNITS

V2=4vsSS(Sv)

TF(4,39¢v2<¢S,01) 1n,29°

PRINVNT CR,"PNVER SUPPLY FRRNR NDIRING TEVP SNAx®
OUINT CR,"TEST ARARTEN"

ARrNETe

GATN 21,01

rYr|Fs2u00n8

PHASE ANV FNR 120NS

CAONNECT TN PHASFE ON FLK

CONMERLT TNRUT TN NRTYFR NN CLK
HTNRTVE2KY N CLK

LARRIVESAY 04 FL K

TUHTIATT CLR ATTH NNE

CONNFCT TNPUT T NRTIVFR NN RFSETY
UTPRIVE=], 8V 1 PFSET

LONRIVE=N_ av O RESFT

ENRCF FESET NTTH 7FRN

FNRCF CLx wlfv NMF3Q7

HIIRRT 0N

B ek -

10,3030
10, 3040
10,3080
10,3040
10,3500
10,3550
10,3600
10,3700
10,3750
10,3800
10_3000

11,0100
11,0200
11,0300
11, 9400

11,0800
11,0400

11 ,0AS0
11,2700
11 _0RNO
11,0900
11 1000
11,1100
11,1290

13,0100
13,0200
1317300
13 0400

13,0800
13,0400
13,1000
13,1100
13,1110
t3, 1120
13,1130
13,1140
13,1180
13,1140
13,1200

13,1300

13,1400

AAT T 4008

RIIRST NFF

TNHTARTT RFESFT &TTH (ONF

TRHHTATT FLK vITH NNF

DISCONMNERT THMPIHIT FRAM PRIVFER NN CILK
NISCANNMFCT TVPUY FRNVM PRTVEFE (W RFSFY
CALL DRIVE LEVFL cnutRng

caLL 11,91

SAVTST

FONT TNHF

GNTN 21,014

NRIVF LFVFL COamTenl

I Z2 XXX AEREEEEELRER R4 2 2%

LOOP 11,11 N=t, 1t

PRFSET lnuv:n,q,n,n,n,o,n,n,o,n.o,o,o.u.o.s,0,5,0,7.0
R

L] .

PRESFT HORVED . 0,2,1,2,2,2¢3¢2¢192.5+3e5¢30503.5,3.5,3
S

L]

PDQINT CR,CR,"VTL = ",LDRV(D),"VNI_ TS VT4 = ",HDR
VID)Y,"yn 18") .

PRINT R, A et r kA AR R A RN R AN RAR AR AR AN R AR N NAR AR

EOGVARKFR YU

LNGRARAYETRINCE,S"NRY YD

CALL VOO CcrnTRn

CALL 13.,n1

CONTTNIE

RF TN

VEE CoMTrRAL

I AR A Z RS R RS S SN R AR 2SR AR RS R RSN Y]
LONP 13,21 VOEC2YMTN,VUMAY,VTINE

PRINT CR,FR,"VCr=2 ",VEC," VNI_TS #NUTY CYCLE= ",NMTy
e TN T LOMAX " RY ", NTME,CR

| NRVMARKFRC!>5N

LOGPARAVE TRTICC1 ,S"VrC">VCC

HPWNROY(1,1,VCE)

“wAavrTf 18

TF(vrC FO S, M 13, 118

TE(VOE FN §,531% 115

TF(VEr EQ A N)13,118

GATN 13,12

PR{=TVSS

PRINT CR,"CIHRRFNT = ',ps;,“ AVWPSg ¥

ViswesK(vyre)

TEF(VCr=(VCr2 ,01)cVICVrC4+(VECy ,N1)) 13,10

PRINT CR,,PPNVFR QUIPPI Y FRwWNR®

1T 18500
12,100
13,1700
QI.QOAH
13 2000
13,2100
13,2230

ta 0100
fa_N200
1R . Nian
1&,2810

1th nNLTA
yh.nunu
1A, 00080
th NRD
thaNuln
1R, D080
th N30N
tw, 0800
Vi NANN
1A NT00N
1A,N80N
tA NQNN
1A, 1000

19,0100
ta n20n
19,0300
19 _04ann
19, 0408
19_nn1n
19,0420
19, 0a80n
19,0600
te nRnq
19_1nnn
19,1100
19,1209
19,1300
19,1400
19,1590
19,1700
19, 1800
19,1900
19,2000

*

PRYVT CRRO"TFST AQNITFN®
ARMGe Tt

T 2y 0t

CALL FREMIENCY CNAMTROL
CALL 1&_N%

AT TINOFE

QF Tk

ERFRIFMEY CNQTRO

PAR A ARSI A RS RN AP ARNIARI ARSI R R AR RN AR AR RN AN AN
LONP 16,09 F=t,17%

PREQFT FRFIP2 ISFh, SFA,1Fh, 1, SFh6,2Fh,2,5€6,3F6,3,5E6
s AF Ry 1 SFAL,SFA,85 SFh,AFh

FREQISFRFQ2(F)

PRINT CO,"FRFEN=Y ,FRFOY," H7 .

FREANSY/EREOY

FACTNREFWRENL /A

TRONCISTINT(FACTNR)

TRUNC2=2TRIINC I *1 AN

FRED=TRIINGD

F NGVAQREREIDAN

LNGPARAVFIRICCYT,S"FRFN®>»FRENT

CALL DTy CYCLFE CNNTRN|

CcALL 19,01

CNNT INIE

RETI10

DHTY CYCLF AYD TF]T RESHULTS CONTROL

AN I ARAP A AR AR AR R A RRRANR AR I RAPNAARRA AN AR NN
TRE NUTY CYPLF TS GIVEN TN FRACTINNS NF THE CYCLE
LOND 19 _G6A DCYCLFeDMIM,DMAY,DINC

TEST=0

CONNFLT NUIeHT TN CARPARATNAR NN NIITS

VASK NNUTS wlITH ONF

HICNYPARFE = D2 4V NN ASNSRY

I DLNUDARE = N 4V NN ASNRR]

BHARF @ = 12948 FNR 10NMK

PHASFE 10 = RO4S FNR 10ONS

CHVPBRF ASNSRT wlTH PATTFRN

MAQK ASNSRT MTTH PATTERM

nnin 19,43

HICNVPARE = 2,4V AN NS

LNCNUDARFE = A UV NN NSw

PHASF 9 = NANS] FND 1 0ONS

CNYPARFE N]A «TTH PATTERN

MASK NSwn «1TY PATYFRM

Nt 19,43

19,2100 RICO¥OAKE = 2 4V v NSTN
1Q, 22n0n LuCnN2RawE = H aqy 0n DTN
19,2400 PHASF 9 = 0N Fiw 1 0~S

19,2500 CHMPARE NSO §yTTH RPATTFRN
19_2A00 MASK NSTN wlld PATTERAY

19,2700 GOYN 19,13

tQ pann HICNWOAKE = J_ a4y NN MWFQ

19 _p2a0n L NCOMPARE = A uay NN YREQD

19,3190 PHASFE 9 = NANS FOR 10MS

19,3200 COVMPARE MPFW NTTH PATTFRN

19,3310 MASK MRED NTTH PATTERNM

19,3400 GOT0 19,43

19,3800 HICNMPARF = 2,4V ON DATAD

19,3400 LOFOMPAKRFE = 0 av N NATAN

19,3400 PHASF Q = 10AvS FNR 10MS

19 _40n0 PHASE 10 = {N0ONS FNR J0ONS

19, 4100 COVMPARFE NATANY WTITH PATYTFRN

19,4200 MASK DATAN «TTH PATTERNM

19,4300 TFST = TFST4+1

19,4400 CALL S0 Ny

19,4500 CALL S1.01

19 _4K”00 callL 82,01

19,4790 CALL S3,01

19,4800 TF(FRRNRYI19 S

19,4900 TF(TEST FN %) 10,81

19,5000 COTOCTESTY 19,18,19,21,19,724,19,15
19,5100 PRINT NAT(ERQNRY2TO, ™ ® .
19,8300 LOGBPAQAMFTRTICCI ,S*NEYCLFYSNCYCLF,NNT(EQROR
19 85400 CONMT INDIF

19,5700 RETHRY

i e mtasme b L

21,0100 x TEST CAYPLETTAN AMD SHITTDHOWN
?1.0)00 * AN A AR RN AR AR R AN RAAT R RR LA NN RS AR AN NOI AR AN
21,0300 TECARNRT I, 08

21.0400 PRINT CO,CR, "axaweTFST COMPLETFDaRaxe® ,C2,rQ
T21.0800 VST=av AT 1na

21 .DAND NDISCNANYECT LOANY N OITS

21,0700 HPARES (1)

21,0780 SFTFVP (25

21,.n8n0 sTNP

SN, N10N « PROGRAM TNPUT TTIMING

SON2N0 2 ket b b A AR R AR A RN N R AR RN R IR A RANA PR NN RN IR R AR
SN,.n30n0 CYPLF = FRFN

50,0400 PHASF & = ONS FNR FRFEN«NCYCLF

S1,N8ND CHNMELT TO PYASE N4 CLK

5N, NANDN PHARF 2 =2 FRFI=7AMS FNR TONS

{ an_nran CHwFET T wHASE 0 SEGY
- g0, NN PHASFE 14 = FRFMDCYCLFeTNH] FOR 140NS
{ K0, NanG PHASF td = FRFILODCYCLF=TONS FNR 140NS

85N, 1000 CONKECT 1O DATAPHASFE OM DATATY
CYIINR I i) WETHIN

St .N10n « SET NRIVE | EVELS

3 §1.u)nn IR EERERREERRIZEZ RS E EE X 222X)
51,0800 NISCNAMWNFCT [PHIT FRNM DRTIVFR NN INS
S1,n10p HIORTVFSHDNRY DY) M TAS
S1 0600 LONRTVE=Z] DRV ()Y M THS

51 ,0A00 HNINRTVFSVCLeY 4 N CL K
St.0700 FUDRTIVESN U4S O6 FLX

51,n3N0n INETRTT TNS ATTH NNF
81,1900 CONNMECT TAROT TO NRIVFR DN TMS

| 51,1990 RETHRN

S2,NM1h & PRNCGAY FNRCF STATFMENTS
Q22,0200 & HARREF AR IR RRNRANARA I AN R AN AR ARRAR RN AN RN

52,0800 FURCE TAQ wlTAH PATTFRN
' 82,0400 FORCFE CLx wiTa PATTFRN;RYZ
§2,10500 FORCF SEAT wTTH PATTFRNSIRZ, INVFRT

S2,0kNN FORCE DATAT 41Tk PATTERNSH?
82,0700 TRRTETT daTal ~TTH PATTESN
. S2.08”00 RETUQw

ST, N100 » THF VOVE RrOUTINF

BR,0P7D0 & 2222 AP RRNRLANANRKRAARRRRRREANANRA AR R NNAR
53,0800 LNAD FROY CORE 77900 Y0 ALt WITH FT,CH

93 ,Nann TRIGGREw 1

S3,0800 MAVF RFGISTER(STIAY TO ALL wITH FI,CM™

K3 ,.0400 TNHTATT INS I TH NNF

S3, AASD wAGK (MITS «w1TH ONF

53,0700 RETHAN

AN ONND » SFTHR 2,8V Laah MADHLE SuPPLY
hﬂ.ﬂlf\l‘ IR ARE RS AR ESRERARRRERSaRRR Rl
AN 0200 +FVSR7

A NTZON VST7=P .5V AT tO0Ma

AR NN *ATY §0%§
RO D800 VI=wWisTiR)
N ORND T7=1VvSs7

A0 ,0T7H0 TF(2,49¢vT7€? ,51)1/0,12

AD DR PRINT N, "VAOLTAGE FRROR ON L NAD MONDNIHLE SHPPLY"
AN, NQ0N PRTAT CR, "TFST ARNRTEN®

AO 100D AHNPR Tz

AN 1100 GHIn 21,09

L
|

] G=-9

3
B
{ KO 1200 TFCT7 LT Y00 tAYAOD 17
RO 1IN0 PRINT (D, M0 NT FROKR ON L DAD MANYLE S:PPL Y"
Al 1ann PRTLNT R ,"TFST ARNTFN®
L I R Avtiyw Tt
g A 1 ANAD GNYT0 21,04
% AO_1T7A0 AR THRN
: {
|
-
?
&
b
]
o
4
{ [

'IIIIlll---------.---.--------------L

{ LINF
THIMRER

1.0000

2.0n00

3.0000

4,0000

S.0000

6,0000

7.0000

R, 0000

9,0000

10,0000
11,0000
t2.0000
13,0000
14,0000
1§.0000
16,0000
17,0000
1R, NODND
19,0000
20,0000
21,0000
f 22,0000
f 23,0000
24,0000
25,0000
26,0000
27.0000
PR.N0OODN
29,0000
30,0000
31,0000
by 32,0000
g 34,0000
35. 0000
36,0009
4 37.000n
3R,N0N0

' 39,0000
40,0000
41,0000
42,0000
43 _nnnn
. 44,0000
- 45,1000

SEFTAR
NIIVMRE R

1547
q4741
4axal]
unzat
SaxAy
SNYAT
S67A1
SRAXAT
6P2XAT

Ival

SaAT

QwaAl
t1YA]
13447
{1RAXAT
1SYAT
hd7A0N
43YAD
dSwA()
47van
S3IANAN
UINAD
SSYAD
S57wdQ
6biwad

2XAN

4740

AXAD
tnxan
12740
17440
{4 xXAT)
AIYA]
S1vAl

Tval

RZAI
\L.YZ: R
19YAT
20741
32741
ISYAY
diwaf
22%an
23YAN
247AN

Pl
M A AF

TADD
TADY
1An?
TAD3
1ADg
TADS
T4Ns
1A97
TADR
1409
1AD10
1ant
TAD12
T1AD13
TADY
1AD1S
NADD
NAN1
0aAnp
0ANS
NADY
NANS
NANG
NAN7?
nann
0ANY
NANDLO
0ADYY
yany 2
Nanty
Nnanty
NAD1S
STOP
MT

A
NV T
SEGT
nmT
RESETY
RI1ISRN
walrl
CL«
M0
MRFN
NSRY

NIT PIN
N CNMMENT

ANNR/DATA THNPLUIT
ADDR/NDATA TNPUT
APDDR/DATA TINPUT
ANHDR/DATA TNPUT
ADDR/DATA INPUT
ANDR/NDATA INPHT
APDR/DATA TNPUT
ANDDR/DATA INPUT
ADNR/DATA INPUT
ANDDR/DATA NPT
ANNDR/DATA INPUT
ANDR/DATA INPUT
ANDR/DATA TNPUT
ANDPDR/DATA INPUT
ANDNR/NDATA INPUT
ADDR/DATA INPUT
ANNDR/DATA OUTPLT
ADDR/NDATYA OUTPUIT
ADDR/DATA NUTPUT
ADDR/DATA DUTPUT
ADDR/DATA NOUTPUT
ANNR/DATA NUTPRYY
ADDR/NDATA OUTPUT
ANDDR/NDATA OUTPUTY
ADNR/DATA NYTPUIT
ADDR/DATA OUTPUT
ADDR/DATA NUTPUT
ADDR/DATA OUTPUT
ADDR/DATA DUTPUT
ADDR/NDATA NHTPUT
ADDR/NDATA NUTPHT
ADDR/DATA NUTPUT
sStT0P

MICRO=IN
VECTNRFD INTERRUPTY
NNNeVECTNRFD INTERRUPT
SFLMENT TRAP
NONOMASKARLE INTERRUPT
RESFT

RIS REAQUFST

wATT

cLOCK

MICRN=NUIT

MEMNRY RFAQUFST
NATA STRNRF READ

G-11

th, 000N
47,0000
UR, NONN
Y _nNnnn
Sa_anagn
81,0000
S2.0nnnN
53_.n0nn
Sy, N000
S8 .,.0n0A
Sk NNON
S7,.0000
SA,NNAN
"A_ANNN
A0 NN
61 . NNN0
A2, 0000
A3 _ 000N
~d ,N0NN0

2R74AN
2rvaAn
2HXANY
PENAN
TAXAD
LR TN X1
nNPYAN
29nAN
g2740
S9vaAn
AN7AD
1R8N
R7I~AN
TRXAD
LR RN
30x AN
2l adn
TIYAN
anzihn

Srn
ST
ST?2
ST
]\
QA t
Shp
Sn3
Sn
L LU
SNk
RIIG AKX
Qa
NS
Ry,
vee
Ng
NSIN
AS

QRTATHS

STATHS

STATUS

STATHS

SFGMENT MIIMRER
SEGMFNT A(IVAFR
SFOMENT NIIMAaFR
SFOMENT MUMRER
SFGMENT NIIMRFR
SFGCMFNT NUMARFR
SFIIMENT NIIMAFR

RUS ACKNOWL FOGF
REAN/ARTTF

NORMAL ZSYSTFM MNANF
RYTF /Aa0ORD

SUPPILY VNLTAGE
NDATA STRARF WRITF
NDATA STROKF TNPHT/ZNNTRT
ADHRFRS STRNRE

G-12

MISSION
of
Rome Awr Development Center

RADC plans and executes reseanrch, development, test and
selected acquisition programs in suppont o4 Command, Contrnofl
Communications and Intelligence (C31) activities. Technical .]
and engineering suppont within areas of technical competence (Q

A8 provided to ESD Progham Offices (P0s) and othen ESD

efements. The principal technical mission areas are 4

communications, electromagnetic guidance and contnol, sun- 0

vedllance of ground and aerospace objects, intelligence data

collection and handling, information system technology,
Lonospheric propagation, sofid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.

:
3
3

B 23 23 23 rd 2323 232323 e I I T3 T

L Al

idatiate i

